首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Noether's first theorem tells us that the global symmetry groupG r of an action integral is a Lie group of point transformations that acts on the Cartesian product of the space-time manifold with the space of states and their derivatives. Gauge theory constructs are thus required for symmetry groups that act indiscriminately on the independent and dependent variables where the group structure can not necessarily be realized as a subgroup of the general linear group. Noting that the Lie algebra of a general symmetry groupG r can be realized as a Lie algebrag r of Lie derivatives on an appropriately structured manifold,G r -covariant derivatives are introduced through study of connection 1-forms that take their values in the Lie algebrag r of Lie derivatives (operator-valued connections). This leads to a general theory of operator-valued curvature 2-forms and to the important special class of Lie connections. The latter are naturally associated with the minimal replacement and minimal coupling constructs of gauge theory when the symmetry groupG r is allowed to act locally. Lie connections give rise to the gauge fields that compensate for the local action ofG r in a natural way. All governing field equations and their integrability conditions are derived for an arbitrary finite dimensional Lie group of symmetries. The case whereG r contains the ten-parameter Poincaré group on a flat space-timeM 4 is considered. The Lorentz structure ofM 4 is shown to give a pseudo-Riemannian structure of signature 2 under the minimal replacement associated with the Lie connection of the local action of the Poincaré group. Field equations for the matter fields and the gauge fields are given for any system of matter fields whose action integral is invariant under the global action of the Poincaré group.  相似文献   

3.
A spin gauge theory based on the groupU(4) is investigated in a general relativistic context including the possibility of nonzero torsion. The language of Clifford bundles over a space-time with metric and metric compatible torsion is used as a convenient tool for the study of fields defined on space-time possessing Clifford multiplication properties. A Dirac-type representation is investigated in detail and the geometric implications for spin gauge theory are pointed out.  相似文献   

4.
In this paper we introduce the concepts of both a natural bundle and a natural operator generalized for the case of the category Mfm × Mfm of cartesian products of two manifolds and products of local diffeomorphisms. It is shown that any r-th order natural bundle over M × N has a structure of an associated bundle (PrM × PrN)Z Gmr × Gmr]. We consider prolongations of such associated bundles and their reduction with respect to a chosen subgroup. The existence of a bijective correspondence between natural operators of order k and the equivariant mappings of the corresponding type fibers are proved. A basis of invariants of arbitrary order is constructed for natural operators of smooth mappings of manifolds endowed with metric fields or connections, with values in a natural bundle of order one.  相似文献   

5.
We transform lattice gauge models to a theory of functional fields defined on a set of closed paths. Some relevant properties of the formalism are discussed in detail, with emphasis on symmetry and topological structure. We then investigate the large-N limit of the U(N) lattice gauge model in arbitrary dimensions using this formalism. Assuming the existence of the limit, we show, to arbitrary order of the strong coupling expansion parameter (g2N)?, which is kept fixed, that for the leading contribution in the limit: (i) the flow of indices in color space can be represented by planar diagrams; (ii) when the diagrams are immersed in space-time they are random surfaces without handles; (iii) there are interactions of the surfaces which can be depicted as the formation of multisheet bubblesw in the surfaces. This formalism also makes it possible to set up a gauge-invariant mean-field approximation.  相似文献   

6.
The dynamics of the spherically symmetric system of gravitation interacting with scalar and Yang-Mills fields is presented in the context of the canonical formalism. The gauge group considered is a general (compact and semisimple) N parameter group. The scalar (Higgs) field transforms according to an unspecified M-dimensional orthogonal representation of the gauge group. The canonical formalism is based on Dirac's techniques for dealing with constrained hamiltonian systems. First the condition that the scalar and Yang-Mills fields and their conjugate momenta be spherically symmetric up to a gauge is formulated and solved for global gauge transformations, finding, in a general gauge, the explicit angular dependence of the fields and conjugate momenta. It is shown that if the gauge group does not admit a subgroup (locally) isomorphic to the rotation group, then the dynamical variables can only be manifestly spherically symmetric. If the opposite is the case, then the number of allowed degrees of freedom is connected to the angular momentum content of the adjoint representation of the gauge group. Once the suitable variables with explicit angular dependence have been obtained, a reduced action is derived by integrating away the angular coordinates. The canonical formulation of the problem is now based on dynamical variables depending only on an arbitrary radial coordinate r and an arbitrary time coordinate t. Besides the gravitational variables, the formalism now contains two pairs of N-vector variables (R, πr), (Θ, πΘ), corresponding to the allowed Yang-Mills degrees of freedom and one pair of M-vector variables, (h, πh), associated with the original scalar field. The reduced Hamiltonian is invariant under a group of r-dependent gauge transformations such that R plays the role of the gauge field (transforming in the typically inhomogeneous way) and in terms of which the gauge covariant derivatives of Θ and h naturally appear. No derivatives of R appear in the Hamiltonian and the gauge freedom allows us to define a gauge in which R is zero. Also the r and t coordinates are fixed in a way consistent with the equations of motion. Some nontrivial static solutions are found. One of these solutions is given in closed form; it is singular and corresponds to a generalization of the singular solution found in the literature with different degrees of generality and the geometry is described by the Reissner-Nordström metric. The other solution is defined through its asymptotic behavior. It generalizes to curved space the finite energy solution discyssed by Julia and Zee in flat space.  相似文献   

7.
M Carmeli  S Malin 《Annals of Physics》1977,103(1):208-232
The starting point is a spinor affine space-time. At each point, two-component spinors and a basis in spinor space, called “spin frame,” are introduced. Spinor affine connections are assumed to exist, but their values need not be known. A metric tensor is not introduced. Global and local gauge transformations of spin frames are defined with GL(2) as the gauge group. Gauge potentials Bμ are introduced and corresponding fields Fμν are defined in analogy with the Yang-Mills case. Gravitational field equations are derived from an action principle. Incases of physical interest SL(2, C) is taken as the gauge group, instead of GL(2). In the special case of metric space-times the theory is identical with general relativity in the Newman-Penrose formalism. Linear combinations of Bμ are generalized spin coefficients, and linear combinations of Fμν are generalized Weyl and Ricci tensors and Ricci scalar. The present approach is compared with other formulations of gravitation as a gauge field.  相似文献   

8.
《Annals of Physics》1986,169(2):414-452
The constructs of this paper rest on two elementary facts: (1) the Poincaré group P10 is the maximal group of isometries of Minkowski space-time M4; (2) P10 has a faithful matrix representation as a subgroup of GL(5, R) that maps an affine set into itself. Local action of P10 and Yang-Mills minimal replacement are shown to induce a well-defined minimal replacement operator that maps the tensor algebra over M4 onto the tensor algebra over a new space-time U4. The natural frame and coframe fields of M4 go over into a canonical system of frame and coframe fields of U4 with both translation and Lorentz-rotation parts. The coframe fields define soldering 1-form fields for U4 that give rise to the standard geometric quantities through the Cartan equations of structure. This leads to unique determinations of all relevant connection coefficients and the associated 2-forms of curvature and torsion that involve the compensating 1-forms for local action of both the translation and the Lorentz-rotation sectors. The metric tensor of U4, that is induced by the minimal replacement operator, is shown to satisfy the Ricci lemma; U4 is necessarily a Riemann-Cartan space. This space admits gauge covariant constant basis fields for the Lie algebra of the Lorentz group and for the Dirac algebra. The induced basis for the Dirac algebra evaluates the images of Dirac operators under minimal replacement, while the induced basis for the Lie algebra of L(4, R) serves to show that the holonomy group of U4 is the Lorentz group. The minimal replacement operator is extended to include the case of a total gauge group that is the direct product of the Poincaré group and a Lie group of internal symmetries of matter fields. This provides a precise method of lifting any action integral of the matter fields from M4 up to U4 so that invariance properties are retained when the total group acts locally. The natural representations afforded by minimal replacement result in curvature being evaluated in terms of first order derivatives of the compensating fields that share many properties in common with the Dirac derivation algebra for spin fields. Direct interpretations of the compensating fields are obtained from the geodesic equations.  相似文献   

9.
Agrand superspace is proposed as the phase space for gauge field theories with a fixed structure groupG over a fixed space-time manifoldM. This superspace incorporatesall principal fiber bundles with these data. This phase space is the space of isomorphism classes ofall connections onall G-principal fiber bundles overM (fixedG andM). The justification for choosing this grand superspace for the phase space is that the space-time and the structure group are determinants of the physical theory, but the principal fiber bundle with the givenG andM is not. Grand superspace is studied in terms of a natural universal principal fiber bundle overM, canonically associated withM alone, and with a natural universal connection on this bundle. This bundle and its connection are universal in the sense that all connections on allG-principal fiber bundles (anyG) overM can be recovered from this universal bundle and its universal connection by a canonical construction. WhenG is Abelian, grand superspace is shown to be an Abelian group. Various subspaces of grand superspace consisting of the isomorphism classes of flat connections and of Yang-Mills connections are also discussed.  相似文献   

10.
We study the strong coupling limit of U(N) or SU(N) gauge theories with fermions on a lattice. The integration over the gauge and fermion degrees of freedom is performed by analytic methods, leading to a partition function in terms of localized meson and baryon fields. A method for deriving a systematic expansion in the inverse of the space-time dimension of the corresponding Green functions is developed. It is applied to the study of spontaneous breakdown of chiral symmetry, which occurs for any U(N) or SU(N) theory with fermions in the fundamental representation. Meson and baryon spectra are then computed, and found to be in close agreement with those obtained by numerical methods at finite coupling. The pion decay constant is estimated.  相似文献   

11.
Toward the construction of the gauge theory on a lattice without species doubling, we formulate the U(1) gauge-coupled Dirac equation on a finite element in (d + 1)-dimensional space-time. For massless (QED)2, we derive the vector current conservation and the axial anomaly. The reproduction of the axial anomaly indicates the resolution of the doubling problem.  相似文献   

12.
In this work, we study the electroweak sphalerons in a 5D background, where the fifth dimension lies on an interval. We consider two specific cases: flat space-time and the anti-de Sitter space-time compactified on S 1/Z 2. In our work, we take the SU(2) gauge–Higgs model, where the gauge fields reside in the 5D bulk; but the Higgs doublet is confined in one brane. We find that the results in this model are close to those of the 4D Standard Model (SM). The existence of the warp effect, as well as the heaviness of the gauge Kaluza–Klein modes make the results extremely close to the SM ones.  相似文献   

13.
A Poincaré affine frame bundle (M) and its associated bundleÊ are established. Using the connection theory of fiber bundles, nonlinear connections on the bundleÊ are introduced as nonlinear gauge fields. An action and two sets of gauge field equations are presented.  相似文献   

14.
Defining a spin connection is necessary for formulating Dirac's bispinor equation in a curved space-time. Hestenes has shown that a bispinor field is equivalent to an orthonormal tetrad of vector fields together with a complex scalar field. In this paper, we show that using Hestenes' tetrad for the spin connection in a Riemannian space-time leads to a Yang-Mills formulation of the Dirac Lagrangian in which the bispinor field Ψ is mapped to a set of SL(2,RU(1) gauge potentials FαK and a complex scalar field ρ. This result was previously proved for a Minkowski space-time using Fierz identities. As an application we derive several different non-Riemannian spin connections found in the literature directly from an arbitrary linear connection acting on the tensor fields (FαK, ρ). We also derive spin connections for which Dirac's bispinor equation is form invariant. Previous work has not considered form invariance of the Dirac equation as a criterion for defining a general spin connection.  相似文献   

15.
The vacuum structure of the (2+1) dimensional Yang-Mills theory is analysed. The non-trivial spherically symmetric vacuum fields in this theory can be calculated in closed form. It is shown that these non-trivial vacuum fields fall faster than 1/r at large r unlike the (3+1) dimensional case, where the vacuum is uniquely Ai = 0 if one requires limr→∞rAi=0.  相似文献   

16.
17.
18.
We present results on the Cauchy problem for coupled classical Yang-Mills and scalar fields in n + 1 dimensional space-time both in the temporal and in the Lorentz gauge. We prove the existence of local solutions for any n, and the existence of global solutions for n = 1, 2 in the temporal gauge and for n = 1 in the Lorentz gauge. The last result also holds for massive Yang-Mill fields.  相似文献   

19.
《Physics letters. [Part B]》1987,199(2):186-190
A full set of factorized, dual, crossing-symmetric tree-level N-point amplitudes is constructed for non-archimedean closed strings. Momentum components and space-time coordinates are still valued in the field of real numbers, quantum amplitudes in that of complex numbers. It is the world-sheet parameters, which one integrates over, that become p-adic. For the closed string the parameters are valued in quadratic extensions of the fields Qp of p-adic numbers (p = prime).  相似文献   

20.
We give the general presciption for calculating the number of moduli of irreducible, stable U(n) holomorphic vector bundles with positive spectral covers over elliptically fibered Calabi–Yau threefolds. Explicit results are presented for Hirzebruch base surfaces B = F r. Vector bundle moduli appear as gauge singlet scalar fields in the effective low-energy actions of heterotic superstrings and heterotic M-theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号