首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

We describe discrete symmetries of two-dimensional Yang–Mills theory with gauge group G associated with outer automorphisms of G, and their corresponding defects. We show that the gauge theory partition function with defects can be computed as a path integral over the space of twisted G-bundles and calculate it exactly. We argue that its weak-coupling limit computes the symplectic volume of the moduli space of flat twisted G-bundles on a surface. Using the defect network approach to generalised orbifolds, we gauge the discrete symmetry and construct the corresponding orbifold theory, which is again two-dimensional Yang–Mills theory but with gauge group given by an extension of G by outer automorphisms. With the help of the orbifold completion of the topological defect bicategory of two-dimensional Yang–Mills theory, we describe the reverse orbifold using a Wilson line defect for the discrete gauge symmetry. We present our results using two complementary approaches: in the lattice regularisation of the path integral, and in the functorial approach to area-dependent quantum field theories with defects via regularised Frobenius algebras.

  相似文献   

2.
A consistent theory of the Heisenberg quantum antiferromagnet in the disordered phase with short-range antiferromagnetic order was developed on the basis of the path integral for the spin coherent states. We presented the Lagrangian of the theory in the form that is explicitly invariant under rotations and found natural variables in terms of which one can construct a perturbation theory. The short-wavelength spin fluctuations are similar to the ones in spin-wave theory, and the long-wavelength spin fluctuations are governed by the nonlinear sigma model. We also demonstrated that the short-wavelength spin fluctuations should be considered accurately in the framework of the discrete version in time of the path integral. In the framework of our approach, we obtained the response function for the spin fluctuations for the whole region of the frequency ω and the wave vector k and calculated the free energy of the system.  相似文献   

3.
We propose a modification of the Faddeev–Popov procedure to construct a path integral representation for the transition amplitude and the partition function for gauge theories whose orbit space has a non-Euclidean geometry. Our approach is based on the Kato–Trotter product formula modified appropriately to incorporate the gauge invariance condition, and thereby equivalence to the Dirac operator formalism is guaranteed by construction. The modified path integral provides a solution to the Gribov obstruction as well as to the operator ordering problem when the orbit space has curvature. A few explicit examples are given to illustrate new features of the formalism developed. The method is applied to the Kogut–Susskind lattice gauge theory to develop a nonperturbative functional integral for a quantum Yang–Mills theory. Feynman's conjecture about a relation between the mass gap and the orbit space geometry in gluodynamics is discussed in the framework of the modified path integral.  相似文献   

4.
The covariant path integral for a free particle in curved space will be evaluated by means of a spectral analysis of smooth paths. No discretization rule will be required to put the action on a lattice. The connection between the resulting quantum hamiltonian and the Onsager-Machlup lagrangian for diffusion processes willbe discussed. The present treatment corrects an earlier version.  相似文献   

5.
We have developed a consistent theory of the Heisenberg quantum antiferromagnet in the disordered phase with a short range antiferromagnetic order on the basis of the path integral for spin coherent states. In the framework of our approach we have obtained the response function for the spin fluctuations for all values of the frequency ω and the wave vector k and have calculated the free energy of the system. We have also reproduced the known results for the spin correlation length in the lowest order in 1/N. We have presented the Lagrangian of the theory in a form which is explicitly invariant under rotations and found natural variables in terms of which one can construct a natural perturbation theory. The short wave spin fluctuations are similar to those in the spin wave theory and they are on the order of the smallness parameter 1/2s where s is the spin magnitude. The long-wave spin fluctuations are governed by the nonlinear sigma model and are on the order of the smallness parameter 1/N, where N is the number of field components. We also have shown that the short wave spin fluctuations must be evaluated accurately and the continuum limit in time of the path integral must be performed after the summation over the frequencies ω.  相似文献   

6.
We investigate the ground state of bosons with long-range interactions in the large U limit on a triangular lattice. By mapping this system to the spin-1/2 XXZ model in a magnetic field, we can apply the spin wave theory to this study. We demonstrate how to construct the phase diagrams within the spin wave theory. The phase diagrams are given in an extensive parameter region, where, besides the superfluid phase, diverse solid and supersolid phases are shown to exist in this model. Especially, we find that the phase diagram obtained in this method is consistent with the one obtained previously using numerical techniques in the Ising limit. This confirms the effectiveness of our method. We analyze the stability of all the obtained supersolids and show that they will not be ruined by the quantum fluctuations. We observe that the quantum fluctuations in the stripe supersolid phase could be enhanced by the external field. We also discuss the relevance of our result with the experiment that may be realized with ultracold bosonic polar molecules in a triangular optical lattice.  相似文献   

7.
《Nuclear Physics B》2001,594(3):769-789
We introduce a new path integral representation for slave bosons in the radial gauge which is valid beyond the conventional fluctuation corrections to a mean-field solution. For electronic lattice models, defined on the constrained Fock space with no double occupancy, all phase fluctuations of the slave particles can be gauged away if the Lagrange multipliers which enforce the constraint on each lattice site are promoted to time-dependent fields. Consequently, only the amplitude (radial part) of the slave boson fields survives. It has the special property that it is equal to its square in the physical subspace. This renders the functional integral for the radial field Gaussian, even when non-local Coulomb-type interactions are included. We propose (i) a continuum integral representation for the set-up of further approximation schemes, and (ii) a discrete representation with an Ising-like radial variable, valid for long-ranged interactions as well. The latter scheme can be taken as a starting point for numerical evaluations.  相似文献   

8.
9.
We consider a class of lattice topological field theories, among which are the weak-coupling limit of 2d Yang-Mills theory and 3d Riemannian quantum gravity, whose dynamical variables are flat discrete connections with compact structure group on a cell 2-complex. In these models, it is known that the path integral measure is ill-defined because of a phenomenon known as ‘bubble divergences’. In this paper, we extend recent results of the authors to the cases where these divergences cannot be understood in terms of cellular cohomology. We introduce in its place the relevant twisted cohomology, and use it to compute the divergence degree of the partition function. We also relate its dominant part to the Reidemeister torsion of the complex, thereby generalizing previous results of Barrett and Naish-Guzman. The main limitation to our approach is the presence of singularities in the representation variety of the fundamental group of the complex; we illustrate this issue in the well-known case of two-dimensional manifolds.  相似文献   

10.
The Hamiltonian counterpart of classical Lagrangian field theory is covariant Hamiltonian field theory where momenta correspond to derivatives of fields with respect to all world coordinates. In particular, classical Lagrangian and covariant Hamiltonian field theories are equivalent in the case of a hyperregular Lagrangian, and they are quasi-equivalent if a Lagrangian is almost-regular. In order to quantize covariant Hamiltonian field theory, one usually attempts to construct and quantize a multisymplectic generalization of the Poisson bracket. In the present work, the path integral quantization of covariant Hamiltonian field theory is suggested. We use the fact that a covariant Hamiltonian field system is equivalent to a certain Lagrangian system on a phase space which is quantized in the framework of perturbative quantum field theory. We show that, in the case of almost-regular quadratic Lagrangians, path integral quantizations of associated Lagrangian and Hamiltonian field systems are equivalent.  相似文献   

11.
We present results of a computer analysis of euclidean solutions of the SU(2) lattice gauge theory Hamiltonian for constant fields. The accumulation of tunneling solutions in a certain region of phase space is investigated because it is expected to give a strong contribution to the path integral. Our analysis shows, that an infinite set of classical trajectories with finite action exists, and describes how they cluster.  相似文献   

12.
Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrödinger equation modified with the Gaussian and the mean curvature.  相似文献   

13.
We use Nash embedding for Riemann smooth manifolds to propose a constrained phase space path integral for quantization of one particle motion in a Riemannian manifold.  相似文献   

14.
Stationary distributions of complex Langevin equations are shown to be the complexified path integral solutions of the Schwinger–Dyson equations of the associated quantum field theory. Specific examples in zero dimensions and on a lattice are given. The relevance to the study of quantum field theory solution space is discussed.  相似文献   

15.
We give a quantum field theory interpretation of Kontsevich's deformation quantization formula for Poisson manifolds. We show that it is given by the perturbative expansion of the path integral of a simple topological bosonic open string theory. Its Batalin–Vilkovisky quantization yields a superconformal field theory. The associativity of the star product, and more generally the formality conjecture can then be understood by field theory methods. As an application, we compute the center of the deformed algebra in terms of the center of the Poisson algebra. Received: 10 March 1999 / Accepted: 30 January 2000  相似文献   

16.
S.G. Rajeev 《Annals of Physics》2007,322(7):1541-1555
We show that a large class of dissipative systems can be brought to a canonical form by introducing complex co-ordinates in phase space and a complex-valued hamiltonian. A naive canonical quantization of these systems lead to non-hermitean hamiltonian operators. The excited states are unstable and decay to the ground state. We also compute the tunneling amplitude across a potential barrier by solving the dissipative version of the Schrödinger equation. We then generalize the formalism to cases where the configuration space is a curved Riemannian manifold.  相似文献   

17.
We derive (quasi-)quantum groups in 2+1 dimensional topological field theory directly from the classical action and the path integral. Detailed computations are carried out for the Chern-Simons theory with finite gauge group. The principles behind our computations are presumably more general. We extend the classical action in ad+1 dimensional topological theory to manifolds of dimension less thand+1. We then construct a generalized path integral which ind+1 dimensions reduces to the standard one and ind dimensions reproduces the quantum Hilbert space. In a 2+1 dimensional topological theory the path integral over the circle is the category of representations of a quasi-quantum group. In this paper we only consider finite theories, in which the generalized path integral reduces to a finite sum. New ideas are needed to extend beyond the finite theories treated here.The author is supported by NSF grant DMS-8805684, a Presidential Young Investigators award DMS-9057144, and by the O'Donnell Foundation. He warmly thanks the Geometry Center at the University of Minnesota for their hospitality while this work was undertaken  相似文献   

18.
The standard Faddeev-Popov procedure for quantization of a gauge theory is modified so as to be valid even when the Gribov problem is present. The hamiltonian is employed and a definite expression for the path integral is obtained for a wide class of gauges.  相似文献   

19.
We construct a hamiltonian lattice gauge theory which possesses local SU (2) gauge invariance and yet is defined on a Hilbert space of 5-dimensional real vectors for every link. This construction does not allow for generalization to arbitrary SU(N), but a small variation of it can be generalized to an SU(N) × U(1) local gauge invariant model. The latter is solvable in simple gauge sectors leading to trivial spectra. We display these by studying a U(1) local gauge invariant model with similar characteristics.  相似文献   

20.
Series expansions are derived for the free energy and the fluctuations of a generalized hamiltonian. These series are analysed in the special case of the XY hamiltonian on an f.c.c. lattice in an external parallel magnetic field. The critical indices seem to be independent of the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号