首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated, as well as the masses of hyperons and some baryonic resonances, and expressed mainly through the values of quark condensates—, q = u, d, s,—the vacuum expectation values (v.e.v.) of quark field. The concept of v.e.v. induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron, and hyperons are calculated. The results of calculation of baryon octet β-decay constants are also presented. The text was submitted by the author in English.  相似文献   

2.
A chiral quark soliton model for the baryon embedded in nuclear medium is proposed. The effective vacuum expectation value of the scalar field felt up by a quark of the baryon in nuclear medium is estimated. The model is solved for the hedgehog baryon state in the semiclassical approximation and self-conskitent approach. Some static properties of the baryon embedded in nuclear medium are calculated. An increment in ra&ns af the baryon is obtained. The numerical results can be used to explain the A-dependence of EMC effect and vacqum pressure constants in nuclear medium.  相似文献   

3.
A mechanism for instanton induced chiral symmetry breaking in an extended QCD model (QCD with fundamental scalars) is proposed to describe quarks and gluons inside a baryon. The model Lagrangian that we use has the same symmetry properties as QCD. The scalar fields are shown to develop vacuum expectation values in the instanton background and generate masses for the three generation of quarks. The minimization condition is also used to break the flavour symmetry to make the -quark heavier that the and quarks. Received: 16 August 1996 / Revised version: 15 October 1997 / Published online: 26 February 1998  相似文献   

4.
We address anticipated fermion–antifermion and dimension-4 gauge-field vacuum-condensate contributions to the magnetic portion of the fermion–photon vertex function in the presence of a vacuum with nonperturbative content, such as that of QCD. We discuss how inclusion of such condensate contributions may lead to a vanishing anomalous magnetic moment, in which case vacuum condensates may account for the apparent consistency between constituent quark masses characterizing baryon magnetic moments and those characterizing baryon spectroscopy.  相似文献   

5.
The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators.  相似文献   

6.
The paper is focused on calculating the finite temperature and quark/baryon chemical potential dependencies of the quark condensate and the π-and σ-meson masses in the subcritical region in the instanton model of the QCD vacuum. The impact of phononlike excitation of instanton liquid on the characteristics of the σ meson in such an environment is also examined.  相似文献   

7.
The modification of kaon and antikaon properties in the interior of (proto-)neutron stars is investigated using a chiral SU(3) model. The parameters of the model are fitted to nuclear-matter saturation properties, baryon octet vacuum masses, hyperon optical potentials and low-energy kaon-nucleon scattering lengths. We study the kaon/antikaon medium modification and explore the possibility of antikaon condensation in (proto-)neutron star matter at zero as well as finite temperature/entropy and neutrino content. The effect of hyperons on kaon and antikaon optical potentials is also investigated at different stages of the neutron star evolution.  相似文献   

8.
We derive here the equation of state for quark matter with a nontrivial vacuum structure in QCD at finite temperature and baryon density. Using thermofield dynamics, the parameters of thermal vacuum and the gluon condensate function are determined through minimisation of the thermodynamic potential, along with a self-consistent determination of the effective gluon and quark masses. The scale parameter for the gluon condensates is related to the SVZ parameter in the context of QCD sum rules at zero temperature. With inclusion of quarks in the thermal vacuum the critical temperature at which the gluon condensate vanishes decreases as compared to that containing only gluons. At zero temperature, we similarly obtain the critical baryon density for the same to be about 0.36 fm?3.  相似文献   

9.
《Nuclear Physics A》1987,469(4):600-616
Because of their non-linearity, the field equations of relativistic nuclear field theory admit of additional solutions besides the normal state of matter. One of these is a finite-temperature abnormal phase. Over a narrow range in temperature, matter can exist in the abnormal phase at zero pressure. This is a hot metastable state, for which there is a barrier against decay, because the field configuration is different than in the normal state, the baryon masses are far removed from their vacuum masses, there is an abundance of pairs also far removed from their vacuum masses, and a correspondingly high entropy. The abundance of baryon-antibaryon pairs is the glue that holds this matter together. The signals associated with this novel state are quite unusual. A fragment of such matter will cool by emitting a spectrum of black-body radiation, consisting principally of photons, lepton pairs and pions, rather than by baryon emission, because the latter are far removed from their vacuum masses. If produced at the upper end of its temperature range, a large fraction of the original energy, more than half in the examples studied here, is radiated in this way. The baryons and light elements produced in the eventual decay, after the abnormal matter has cooled to a domain where its pressure becomes positive, will account for only a fraction of the original energy. The energy domain of this state depends sensitively on the coupling constants, and within a reasonable range as determined by nuclear matter properties, can lie in the range of GeV to tens of GeV per nucleon.  相似文献   

10.
The effective potential of the Higgs scalar field in the Standard Model may have a second degenerate minimum at an ultrahigh vacuum expectation value. This second minimum then determines, by radiative corrections, the values of the top-quark and Higgs-boson masses at the standard minimum corresponding to the electroweak energy scale. An argument is presented that this ultrahigh vacuum expectation value is proportional to the energy scale of gravity, E Planck ≡ √?c 5/G N, considered to be characteristic of a spacetime foam. In the context of a simple model, the existence of kink-type wormhole solutions places a lower bound on the ultrahigh vacuum expectation value and this lower bound is of the order of E Planck.  相似文献   

11.
A toy model is proposed in which the cosmological constant and the baryon number density of the Universe are interrelated. The model combines the mechanism of Dimopoulos and Susskind [S. Dimopoulos, L. Susskind, Phys. Rev. D 18 (1978) 4500] in which the baryon number density of the Universe is generated by the time-dependence of the phase of a complex scalar field, i.e. its ‘angular momentum’ in the two-dimensional complex field space, with that of Yoshimura [M. Yoshimura, Phys. Lett. B 608 (2005) 183, hep-ph/0410183] in which the ‘centrifugal force’ due to the ‘angular momentum’ pushes the vacuum expectation value of the scalar field out of a negative potential minimum and provides a small but positive cosmological constant. Unfortunately, our model fails to relate the smallness of the two numbers directly, requiring a fine-tuning of the negative potential minimum.  相似文献   

12.
The effective action formulation of lattice QCD is extended to incorporate baryons. At strong coupling we find a generalized σ model where the baryons obtain their mass via a non-vanishing vacuum expectation value 〈¯ΦΦ〉. The SU(3) effective potential is worked out for Susskind fermions taking into account the influence of the baryons, and the results are compared with the U(3) theory. The large-N behavior of the SU(N) theory is studied as well. A loop expansion method is proposed for dealing with general multi-component baryon fields in both Susskind's and Wilson's fermion formulations.  相似文献   

13.
Baryon resonances with even and odd parity are collectively investigated from the viewpoint of chiral symmetry (ChS). We propose a quartet scheme where Delta's and N(*)'s with even and odd parity form a chiral multiplet. This scheme gives parameter-free constraints on the baryon masses in the quartet, which are consistent with observed masses with spin 1 / 2,3 / 2,5 / 2. The scheme also gives selection rules in the one-pion decay: The absence of the parity nonchanging decay N(1720)-->piDelta(1232) is a typical example which should be confirmed experimentally to unravel the role of ChS in baryon resonances.  相似文献   

14.
We employ the Nambu-Jona-Lasinio model to determine the vacuum pressure on the quarks in a baryon and hence their density inside. Then we estimate the baryonic masses by implementing the local density approximation for the mean-field quark energies obtained in a uniform and isotropic system. We obtain a fair agreement with the experimental masses. Received: 27 September 2002 / Accepted: 4 October 2002 / Published online: 4 February 2003 RID="a" ID="a"e-mail: giacosa@tphys.physik.uni-tuebingen.de Communicated by A. Molinari  相似文献   

15.
We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.  相似文献   

16.
The lightest electroweak baryon as a topological object is investigated by using a general effective Lagrangian of composite electroweak symmetry breaking and the spin-independent electroweak baryon-nucleon scattering cross section is calculated. We explicitly show the masses of the electroweak baryons and the cross section as functions of the Peskin-Takeuchi S parameter and the ratio of the masses of axial-vector and vector composite bosons. We find that it is acceptable to regard the electroweak baryon as a dark matter candidate and the even number of technicolor is favored.  相似文献   

17.
The effects of the scale dependent vacuum expectation values (VEVs) on the running masses of quarks and leptons in non-SUSY gauge theories have been considered by a number of authors. Here we use RGEs of the VEVs, and the gauge and Yukawa couplings in the MSSM to analytically derive new one loop formulas for the running masses above the SUSY breaking scale. Some of the masses exhibit a substantially different behaviour with respect to their dependence on the gauge and Yukawa couplings when compared with earlier formulas in the MSSM derived ignoring RGEs of VEVs. In particular, the masses of the first two generations are found to be independent of the Yukawa couplings of the third generation in the small mixing limit. New numerical estimates at the two loop level are also presented. Received: 30 July 1999 / Published online: 6 April 2000  相似文献   

18.
The lightest electroweak baryon as a topological object is investigated by using a general effective Lagrangian of composite electroweak symmetry breaking and the spin-independent electroweak baryon-nucleon scattering cross section is calculated. We explicitly show the masses of the electroweak baryons and the cross section as functions of the Peskin-Takeuchi S parameter and the ratio of the masses of axial-vector and vector composite bosons. We find that it is acceptable to regard the electroweak baryon as a dark matter candidate and the even number of technicolor is favored.  相似文献   

19.
We extract the mass spectrum of the triply heavy baryon Ωccb using the hypercentral constituent quark model. The first order correction is also added to the potential term of the Hamiltonian. The radial and orbital excited state masses are determined, and the Regge trajectories and magnetic moments for this baryon are also given.  相似文献   

20.
We briefly outline the two popular approaches on radiative corrections to neutrino masses and mixing angles, and then carry out a detailed numerical analysis for a consistency check between them in MSSM. We find that the two approaches are nearly consistent with a discrepancy factor of 4.2% with running vacuum expectation value (VEV) (13% for scale-independent VEV) in mass eigenvalues at low-energy scale but the predictions on mixing angles are almost consistent. We check the stability of the three types of neutrino models, i.e., hierarchical, inverted hierarchical and degenerate models, under radiative corrections, using both approaches, and find consistent conclusions. The neutrino mass models which are found to be stable under radiative corrections in MSSM are the normal hierarchical model and the inverted hierarchical model with opposite CP parity. We also carry out numerical analysis on some important conjectures related to radiative corrections in the MSSM, viz., radiative magnification of solar and atmospheric mixings in the case of nearly degenerate model having same CP parity (MPR conjecture) and radiative generation of solar mass scale in exactly two-fold degenerate model with opposite CP parity and non-zero Ue3 (JM conjecture). We observe certain exceptions to these conjectures. We find a new result that both solar mass scale and Ue3 can be generated through radiative corrections at low energy scale. Finally the effect of scaledependent vacuum expectation value in neutrino mass renormalisation is discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号