首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal conductivity of a number of ferrofluids consisting of colloidally dispersed Fe3O4 particles in diester, hydrocarbon, water and fluorcarbon carriers have been measured at 38°C. The variation in thermal conductivity with particle concentration is well described by Tareef's equation (1940). This has enabled the ratio of the physical to magnetic size to be determined and compared with estimates of the ratio obtained from electron micrographs and magnetic measurements.The fit between theory and experiment is particularly good for hydrocarbon carrier fluids giving the ratio of solid to magnetic radiusR i/R m=1.24±0.03 compared with the value obtained from magnetic data and electron micrographs of 1.19±0.07. The corresponding value from the fluids with a diester carrier ranges between 1.1<R d/R m<1.3 which is again consistent with microscopy and magnetic data.The application of a magnetic field of 0.1 T had no noticeable effect on the thermal conductivities of ferrofluids.  相似文献   

2.
Thermal conductivity measurements using the flash method   总被引:1,自引:0,他引:1  
Thermal diffusivity is the speed with which heat propagates through a material. It has a multitude of direct applications, such as determining heat transfer through brake pads at the moment of contact, etc., but more often it is used to derive thermal conductivity from the fundamental relationship tying it with specific heat capacity and density. Using a new multi-sample configuration system, and testing a reference sample adjacent to the unknown, specific heat capacity can be obtained parallel with thermal diffusivity. Thus, a single test yields thermal diffusivity and thermal conductivity with prior knowledge of density. The method is fast and produces results with high accuracy and very good repeatability. The sample size, 12 to 30 mm diameter and 2 to 5 mm thickness, is easy to handle and is well suited for a broad range of materials, even for composites, often a problem for other methods. Typical data on two polymers, Pyrex glass and Pyroceram 9606 are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
A study of thermal properties of CuO dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K has been performed. Thermal conductivities have been studied by the steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels. Heat capacities have been measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” Results for thermal conductivities can be well justified using a classical model (Hamilton–Crosser), and experimental measurements of heat capacities can be justified with a model of particles in thermal equilibrium with the base fluid.  相似文献   

4.
High strength polyethylene fiber (Toyobo, Dyneema® fiber, hereinafter abbreviated to DF) used as reinforcement of fiber‐reinforced plastics for cryogenic use has a high thermal conductivity. To understand the thermal conductivity of DF, the relation between fiber structure and thermal conductivity of several kinds of polyethylene fibers having different modulus from 15 to 134 GPa (hereinafter abbreviated to DFs) was investigated. The mechanical series‐parallel model composed of crystal and amorphous was applied to DFs for thermal conductivity. This mechanical model was obtained by crystallinity and crystal orientation angle measured by solid state NMR and X‐ray. Thermal conductivity of DF in fiber direction was dominated by that of the continuous crystal region. The thermal conductivity of the continuous crystal part estimated by the mechanical model increases from 16 to 900 mw/cmK by the increasing temperature from 10 to 150K, and thermal diffusivity of the continuous crystal part was estimated to about 100 mm2/s, which is almost temperature independent. The phonon mean free path of the continuous crystal region of DF obtained by thermal diffusivity is almost temperature independent and its value about 200 Å. With the aforementioned, the mechanical series‐parallel model composed of crystal and amorphous regions could be applied to DFs for thermal conductivity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1495–1503, 2005  相似文献   

5.
Reliable measurement results of electrolytic conductivity (EC), in particular for low values, must be metrologically traceable and be based on a realistic measurement uncertainty budget. The use of certified reference materials (CRMs) can help to achieve this goal. This paper presents results from all stages of the certification of an EC CRM with a conductivity of 1.5 μS cm?1, including the preparation of the batch solution and the evaluation of the homogeneity and stability of the bottled CRM. An uncertainty budget is presented for the CRM, including the main contributions from each of these sources. The CRM batch remained stable within its certified uncertainty for more than 1 year.  相似文献   

6.
Size fractionated aerosols were collected with low pressure Berner impactors on a radio/TV tower 110 m above ground on a hill 10 km east of Bern at a total elevation of 1060 m asl. Two different wind sectors were chosen with the goal of assessing any differences in lead concentration and the 3 radiogenic lead isotopes (206,207,208) for east and west wind, respectively. A leaching technique was used to extract the lead quantitatively from the surface of the impaction foils. This method has been proven to be better suited for airborne particles than complete microwave digestion because it is less time consuming and contamination risk is smaller. Blank considerations played a major role in choosing all the chemicals, tubes, beakers and selecting the analytical method. Lead concentrations were determined with GF-AAS and lead isotopes with two different ICP-MS systems, one being a multicollector system. Precision of the simultaneous multicollector system was found to be at least a factor of 3 better than that of the sequentially operating ICP-MS. The small variations in isotope ratios from the two wind sectors can be distinctly seen with this enhanced precision. The observed relative difference in isotope ratios between east- and westwind was ~0.6% for 207Pb/206Pb and ~0.5% for 208Pb/206Pb.  相似文献   

7.
Size fractionated aerosols were collected with low pressure Berner impactors on a radio/TV tower 110 m above ground on a hill 10 km east of Bern at a total elevation of 1060 m asl. Two different wind sectors were chosen with the goal of assessing any differences in lead concentration and the 3 radiogenic lead isotopes (206,207,208) for east and west wind, respectively. A leaching technique was used to extract the lead quantitatively from the surface of the impaction foils. This method has been proven to be better suited for airborne particles than complete microwave digestion because it is less time consuming and contamination risk is smaller. Blank considerations played a major role in choosing all the chemicals, tubes, beakers and selecting the analytical method. Lead concentrations were determined with GF-AAS and lead isotopes with two different ICP-MS systems, one being a multicollector system. Precision of the simultaneous multicollector system was found to be at least a factor of 3 better than that of the sequentially operating ICP-MS. The small variations in isotope ratios from the two wind sectors can be distinctly seen with this enhanced precision. The observed relative difference in isotope ratios between east- and westwind was approximately 0.6% for 207Pb/206Pb and approximately 0.5% for 208Pb/206Pb.  相似文献   

8.
Thermal conductivities and specific heat capacities of nanoparticles of Al2O3 dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K were measured. The steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels, was used for the thermal conductivities measurements. The heat capacities were measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” The Hamilton–Crosser model properly accounts for the thermal conductivity of the studied nanofluids. Assuming that the nanoparticles and the base fluid are in thermal equilibrium, the experimental specific heat capacities of nanofluids are correctly justified.  相似文献   

9.
CE with capacitively coupled contactless conductivity detection (CE-C(4)D) was explored and validated for the identification and quantification of organic acids in various types of samples. The analyses were performed under optimized conditions, using a buffer system composed of 20 mM MES-histidine (His), pH 6.0, 0.1 mM CTAB, 0.025% HP-beta-CD, and 10% methanol. The investigation included a study of the effects of buffer pH, concentration of CTAB, type and concentration of organic additives, on the migration behavior, resolution and selectivity of the organic acids. The intra- and interday RSDs (n = 6) obtained for migration time and peak area were typically in the range of 0.12-2% and 0.5-4%, respectively. Linearity, detection limits, and repeatability were evaluated. In order to evaluate the application potential of the developed method, real samples from different sources were analyzed. The results demonstrate that CE-C(4)D is a versatile tool for analyzing organic acids in beverages, Chinese herbal medicines (CHM) and plants as it allows for their detection, identification, and quantification.  相似文献   

10.
We present a factorization of the Ewald sum permitting efficient computation of the reciprocal space part of the molecular representation for the heat flux vector. We use the derived expression to evaluate thermal conductivity of a model of ethanol at several near-ambient state points.  相似文献   

11.
12.
The hypothetical salts Li4SiN2O and Li7SiN3O were sought in the course of studies on the reactions of Li2SiN2 and Li5SiN3 with lithium oxide, and of LiSiNO with lithium nitride.
Zusammenfassung In einer Reihe von Studien der Reaktionen von Li2SiN2 und Li5SiN3 mit Lithiumoxid bzw. LiSiNO mit Lithiumnitrid wurde nach den hypothetischen Salzen Li4SiN2O und Li7SiN3O gesucht.

Li2SiN2 Li5SiN3 LiSiNO Li4SiN2O Li7SiN3O.
  相似文献   

13.
Boron nitride (BN) micro particles modified by silane coupling agent, γ‐aminopropyl triethoxy silane (KH550), are employed to prepare BN/epoxy resin (EP) thermal conductivity composites. The thermal conductivity coefficient of the composites with 60% mass fraction of modified BN is 1.052 W/mK, five times higher than that of native EP (0.202 W/mK). The mechanical properties of the composites are optimal with 10 wt% BN. The thermal decomposition temperature, dielectric constant, and dielectric loss increase with the addition of BN. For a given BN loading, the surface modification of BN by KH550 exhibits a positive effect on the thermal conductivity and mechanical properties of the BN/EP composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
For liquid crystals exhibiting several fluid or viscous phases, no thermodilatometric method exists for small samples. By simply adding to the basic equipment for the investigation of liquid crystals a Michelson interferometer objective and a photomultiplier, dilatometric studies can be performed from photometric measurements on little droplets of fluid materials. The volume of the samples is about 0.1 cubic millimeter. Introducing the notion of useful radius, data for the isobaric thermal expansion coefficient and volume changes at the phase transitions are deduced from experiments. Efficiency and sensitivity tests are performed on two well known fluid compounds: mercury and silicone oil. The method is then applied to the determination of the thermodilatometric data of two pure liquid crystal compounds — pentyl et octyl cyano biphenyles — and of a commercial nematic liquid crystal mixture.  相似文献   

15.
Thermal conductivity of exfoliated graphite nanocomposites   总被引:1,自引:0,他引:1  
Since the late 1990’s, research has been reported where intercalated, expanded, and/or exfoliated graphite nanoflakes could also be used as reinforcements in polymer systems. The key point to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate graphite using Graphite Intercalated Compounds (GICs). Natural graphite is still abundant and its cost is quite low compared to the other nano–size carbon materials, the cost of producing graphite nanoplatelets is expected to be ~$5/lb. This is significantly less expensive than single wall nanotubes (SWNT) (>$45000/lb) or vapor grown carbon fiber (VGCF) ($40–50/lb), yet the mechanical, electrical, and thermal properties of crystalline graphite flakes are comparable to those of SWNT and VGCF. The use of exfoliated graphite flakes (xGnP) opens up many new applications where electromagnetic shielding, high thermal conductivity, gas barrier resistance or low flammability are required. A special thermal treatment was developed to exfoliate graphite flakes for the production of nylon and high density polypropylene nanocomposites. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the degree of exfoliation of the graphite platelets and the morphology of the nanocomposites. The thermal conductivity of these composites was investigated by three different methods, namely, by DSC, modified hot wire, and halogen flash lamp methods. The addition of small amounts of exfoliated graphite flakes showed a marked improvement in thermal and electrical conductivity of the composites.  相似文献   

16.
The thermal conductivities of unidirectional gel-spun polyethylene fiber-reinforced composites have been measured parallel (K∥?) and perpendicular (K⊥) to the fiber axis from 15 to 300K. The axial thermal conductivity K∥? varies linearly with volume fraction vf of fiber, while the transverse thermal conductivity K⊥ follows the Halpin-Tsai equation. Extrapolation to vf = 1 gives the thermal conductivity of gel-spun polyethylene fiber which, at 300K, has values of 380 and 3.3 mW cm?1K?1 along and perpendicular to the fiber axis, respectively. The axial thermal conductivity is exceptionally high for polymers, and is more than twice the thermal conductivity of stainless steel. This high value arises from the presence of a large fraction of long (> 50 nm) extended chain crystals in the fiber. Further improvement of up to a factor of 10 is possible if the length and volume fraction of the extended chain crystals can be increased. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
18.
Thermal conductivity kappa of seven polymerizing liquids has been measured in real time at different temperatures, and calorimetry and dielectric spectroscopy of one liquid are performed to help interpret the results. As a covalently bonded linear chain or a network structure in the liquid grows, kappa of the Debye equation initially increases with the polymerization time t(polym) as the molecular weight, density, and sound velocity increase, as on cooling a liquid. The measured kappa reaches a maximum and then decreases, thus showing a peak at a certain t(polym) and finally becomes constant, which is not the true behavior of steady state kappa. The dielectric relaxation time of the covalently bonded structure at the t(polym) for the kappa peak is less than 5 s and the extent of polymerization is below the vitrification plateau value. The peak height increases when the pulse time for kappa measurement is increased. An increase in the liquid's temperature shifts the kappa peak to a shorter t(polym). Liquid compositions polymerizing rapidly show a similar shift, and those polymerizing slowly or whose viscosity does not reach a high enough value show a small kappa peak or none. The kappa peak may be an artifact of the time dependence of heat capacity during the pulse time used for the kappa measurement, as proposed for glasses and supercooled liquids, similar to the changes in other properties observed as an artifact of kinetic freezing/unfreezing. For a polymerizing liquid, the peak may additionally arise when the rate of increase in the elastic modulus becomes equal to the rate of decrease in equilibrium Cp. In either case, its appearance does not distinguish the Brownian motions' slowing on polymerization from that on cooling or compressing a liquid.  相似文献   

19.
A semi-empirical method is developed for the prediction of the thermal conductivity of binary liquid mixtures. The proposed method is tested by calculating the thermal conductivity of twelve binary liquid mixtures and an excellent agreement between the observed and calculated values is obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号