首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a study on different ionization states and conformations of the bimolecular (Gly)2 system by means of quantum mechanical calculations. Optimized geometries for energy minima of the glycine dimer, as well as relative energies and free energies were computed as a function of the medium: gas phase, nonpolar polarizable solvent, and aqueous solution. The polarizable continuum model was employed to account for solvation effects. Energy calculations were done using the MP2/aug‐cc‐pVTZ and B3LYP/6‐311+G(2df,2p) methods on B3LYP/6‐31+G(d,p) optimized structures (some single‐point energy calculations were also done using the B3PW91 and PBE1KCIS methods). Ionized forms of the glycine dimer (either zwitterion–zwitterion or neutral–zwitterion) are predicted to exist in all media, in contrast to amino acid monomers. In aqueous solution, dimerization is an exergonic process (?4 kcal mol?1). Thus, according to our results, zwitterion–zwitterion Gly dimers might be abundant in supersaturated glycine aqueous solutions, a fact that has been connected with the structure of α‐glycine crystals but that remains controversial in the literature. Another noticeable result is that zwitterion–zwitterion interactions are substantially underestimated when computed using methods based on density functional theory. For comparison, some calculations for the dimer of the simplest chiral amino acid alanine were done as well and differences to the glycine dimer are discussed.  相似文献   

2.
The stable conformations for zwitterionic leucine have been searched for in solution as well as in gas phase. A total of 54 trial structures were generated by considering possible combinations of single bond rotamers. It is observed that zwitterions are not stable in gas phase. In order to investigate the zwitterions of leucine in solution, the calculations for all trial structures of zwitterions were performed initially at the PM3 level and 14 the lowest energy structures were reoptimized at the B3LYP/6-311G(d) level using the CPCM model. Seven of these conformers of zwitterionic leucine were found to be stable in solution. The five most stable conformers were then reoptimized at the B3LYP/6-311++G(d, p) level. The energy ordering of the canonical leucine(neutral) conformers were also considered on the basis of single point energy calculations at the B3LYP/6-311++G(d, p) level using the CPCM model. The chemical hardness, chemical potential, vertical ionization energy and vertical electron affinity were calculated for a few of the most stable canonical leucine and its zwitterions in solution. The effects of explicit addition of water molecules (microsolvation) on the structure and the energy of both canonical and zwitterionic conformers of leucine were investigated. It is noted that in gas phase, the singly and doubly hydrated canonical (neutral) forms are more stable than their zwitterionic counterparts. The solvated zwitterions and canonical structures of leucine were further investigated using the discrete/SCRF model with zero, one and two water molecules. In solution, the continuum solvent model shows that the bare zwitterionic form is more stable than the bare canonical form by 1.6 kcal/mol. This energy separation is increased to 3.8 and 4.8 kcal/mol with inclusion of one and two water molecules, respectively. The optimized structural parameters for the most stable zwitterionic leucine with zero, one and two water molecules in solution were compared with those reported for l-leucine crystal, which shows a close agreement between the optimized geometrical parameters of the zwitterionic leucine with two water molecules in solution with the experimental geometrical parameters for l-leucine crystal. It is also observed that when the structures of zwitterions with one and two explicit water molecules are optimized in solution, the geometrical parameters and their relative energies are found to be appreciably modified. We have also calculated the vibrational spectra of the most stable solvated zwitterionic leucine as well as for the most stable structure of zwitterionic leucine with one and two water molecules in solution.  相似文献   

3.
脯氨酸的构象及性质   总被引:1,自引:0,他引:1  
用X3LYP法在6-311++G(d, p)和6-311++G(3df, 3pd)基组水平上对脯氨酸15种构象的几何结构、相对能量、电子结构、红外光谱、偶极矩、极化率等性质进行了研究, 并与PBE1PBE/6-311++G(d, p)的结果和文献相比较, 从而得到: (1) 的脯氨酸的15种构象中能量最低的有4种, 不同构象中存在着强弱不同的5种氢键, 其中以N…H—O氢键最强, 并存在特殊的C—H…O=C氢键. 两种方法计算的几何结构数据相近, 均与实验值吻合; (2) 在构象相对能差计算方面, X3LYP具有明显的优势, 用中等基组就可以得到与高水平从头算法和大基组相同的结果, 而PBE1PBE法计算的相对能值则相差较大; (3) 脯氨酸不同构象中偶极矩最大和极化率最小的是最稳定的构象1和2, 两种方法计算的结果一致.  相似文献   

4.
Geometries of the normal (N) and zwitterionic (Z) forms of glycine (gly) and their complexes gly.(H2O)n, n = 0–2, were fully optimized in gas phase and aqueous media, and transition states located between the corresponding N and Z forms. The geometry was also optimized and vibrational spectra calculated for the gly.(H2O)3 complex of Z glycine. Density functional theory at the B3LYP/AUG‐cc‐pVDZ level was employed for the geometry optimization calculations in gas phase and aqueous media while single point energy calculations were performed at the MP2/AUG‐cc‐pVDZ level in each case. Solvation in bulk water was treated using the polarizable continuum model (PCM). Zero‐point energy correction to total energy and thermal energy correction to enthalpy were obtained at the B3LYP/AUG‐cc‐pVDZ level of theory in both gas phase and bulk aqueous media and these corrections were also considered to be valid for the corresponding single point energy calculations performed at the MP2/AUG‐cc‐pVDZ level of theory. When geometries of the complexes of glycine with water molecules are optimized in aqueous media, the calculated properties are found to be appreciably modified with respect to those obtained by gas phase geometry optimization followed by solvation in aqueous media. For several vibrational frequencies, the agreement between the calculated and experimentally observed results is improved appreciably when both the specific and bulk solvent effects are considered in combination with full geometry optimization in aqueous media. For certain vibrational frequencies, mode assignments have also been modified. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

5.
王红磊  邹昊  胡勇军 《结构化学》2011,30(11):1656-1671
Microsolvation of glycine in methanol clusters is explored by the use of DFT calculation method. The lowest energy conformations within 16.72 kJ·mol-1 of the glycine clustering with one to six methanol molecules, which are obtained at the B3LYP/6-31+G(d) level of theory, are reoptimized at PBE1PBE/6-311+G(d,p). The calculated results agree with our previous results with B3LYP (Chin. J. Chem. Phys. 22 (2009) 577) that the clusters of two forms (Z-and N-form) tend to be isoenergetic when the number of the solvate molecules reaches six. Furthermore, this result is in good agreement with the experiment of the tryptophan-methanol clusters, implying that the present treatments are reasonable and reliable. The results also indicate that nine methanol molecules are not enough to fully solvate a glycine molecule, and a tentative estimation is obtained that ten methanol molecules may fully solvate a glycine molecule, which consists with the experiment results.  相似文献   

6.
7.
Based on the B3LYP and MP2/aug-cc-pVDZ calculations, 51 cysteine conformers were found to be stable in the gas phase. The calculations were repeated for the most stable eight structures by using the aug-cc-pVTZ basis set. To estimate the influence of water on the cysteine conformation, the IEF-PCM/B3LYP/aug-cc-pVDZ calculations were carried out and showed 44 neutral and 12 zwitterion conformers to be stable in the water solution. The most stable cysteine structure in water appeared to be the zwitterionic conformer quite similar to the molecule observed in the crystal state.  相似文献   

8.
Molecular structure, relative stability of conformers, and tautomers of (5-methyl-1H-[1,2,4]triazol-3-ylsulfanyl)-acetic acid (MTSA) have been investigated by experimental (X-ray diffraction) and theoretical (B3LYP/aug-cc-pVDZ) methods. It was demonstrated that in the solid state MTSA exists in N1H tautomeric form. This tautomer is not the most stable in gas phase and its stabilization is provided by environment effects.  相似文献   

9.
Absorption and fluorescence spectra of graphene quantum dots (GQDs) have been computed by using time‐dependent density functional theory (TDDFT). Different functionals, including PBE, TPSSh, B3LYP, PBE0, CAM‐B3LYP, and LC‐ωPBE, have been tested and B3LYP/6‐31G(d) has been proven to be the most accurate method for our work. The bulk solvent effects of toluene and dichloromethane have been assessed by using the polarizable continuum model (PCM). The absorption wavelength of GQDs in solvents is red‐shifted compared with that in the gas phase. Edge functionalization effects analysis shows that a small number of substituted groups on GQDs induce a small redshift whereas a large redshift occurs when the edges of GQDs are all decorated. Little difference in the fluorescent emission was observed in solvents and in the gas phase. Molecular orbital transition and transition density matrix analysis have been performed. The electronic transition mainly occurs in the middle part of the structure of C132. The strong absorption of C132 corresponds to a S0→S3 transition and the fluorescence emission is ascribed to a S1→S0 transition, which indicates that Kasha’s rule is obeyed.  相似文献   

10.
Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP/6-311G* level and then subjected to further optimization at the B3LYP/6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD/6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP/6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP/6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP/6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide qualitatively correct results in the solution.  相似文献   

11.
The structure and energy of A-tetrads with N6-H6...N3 H-bonds was studied using B3LYP and BH&H density functional theory. The planar A-tetrad with C(4h) symmetry is more stable than the nonplanar structures at C4 and S4 symmetry. This structure corresponds to a local energy minimum. The energies of the structures with N6-H6...N1 and N6-H6...N7 H-bonds studied previously are of similar magnitude. Structures of A-tetrad complexes with sodium and potassium were most stable at S4 symmetry, and similarly, sandwich complexes consisting of two tetrads and a single cation were most stable at S8 symmetry. Relative energies of sandwich complexes with different symmetries obtained with the B3LYP and BH&H methods were quite different. BH&H overestimates the interaction energies between hydrogen-bonded neighbor bases relative to B3LYP.  相似文献   

12.
 The accuracy of predicted hydrogen binding energies and equilibrium structures for a benchmark set of molecules is compared for some recently developed density functionals, Becke's three parameter hybrid method with the Lee, Yang, and Parr (LYP) correlation functional (B3LYP), Becke's half and half functional combined with the LYP correlation functional (BHLYP), Perdew, Burke and Ernzerhof functional (PBE), Van Voorhis, Scuseria exchange correlation functional (VSXC), the hybrid Perdew, Burke and Ernzerhof functional (PBE1PBE), and meta-generalized gradient approximation (meta-GGA). Overall, the hybrid functionals which contain a portion of Hartree–Fock exchange (B3LYP, BHLYP, and PBE1PBE) yield the most accurate results. The kinetic-energy-density-dependent functionals, VSXC and meta-GGA, are significantly less accurate. Received: 10 December 1999 / Accepted: 5 March 2000 / Published online: 21 June 2000  相似文献   

13.
We have theoretically investigated the low energy conformers of neutral glycine (NH(2)CH(2)COOH) and its isomer methylcarbamic acid (CH(3)NHCOOH) in the gas phase. A total of 16 different levels of the theory, including CCSD(T), MP2 and B3LYP methods with various Pople and Dunning type basis sets with and without polarization and diffuse functions were used. We found eight low energy glycine conformers, where the heavy atoms in three have a planar backbone, and four low energy methylcarbamic acid conformers all with non-planar backbones. Interestingly at all levels of theory, we found that the most stable methylcarbamic acid conformer is significantly lower in energy than the lowest energy glycine conformer. The MP2 level and single point CCSD(T) calculations show the lowest energy methylcarbamic acid conformer to be between 31 to 37 kJ mol(-1) lower in energy than the lowest energy glycine conformer. These calculations suggest that methylcarbamic acid might serve as a precursor to glycine formation in the Interstellar Medium (ISM). We also report the theoretical harmonic vibrational frequencies, infrared intensities, moment of inertia, rotational constants and dipole moments for all of the conformers. In order to understand how glycine or methylcarbamic acid might be formed in the ISM, larger calculations which model glycine or its isomer interacting with several surrounding molecules, such as water, are needed. We demonstrate that B3LYP method should provide a reliable and computationally practical approach to modeling these larger systems.  相似文献   

14.
Infrared and Raman spectroscopy in H(2)O and D(2)O and quantum Density Functional calculations were used to determine the structure of histamine free-base in aqueous solution. A quantum mechanical study of the tautomeric equilibrium of histamine free-base in solution was performed at the 6-311G level. Electronic correlation energies were included by using the hybrid functional B3LYP. The solvent was simulated as a continuum characterized by a dielectric constant, and the quantum system (solute) was placed in an ellipsoidal cavity. Solute-solvent electrostatic interaction was calculated by means a multipolar moment expansion introduced in the Hamiltonian. Four relevant histamine conformations were optimized by allowing all the geometrical parameters to vary independently, which involved both the gauche-trans and the N3H-N1H tautomerisms. The calculated free energies predicted N3H-gauche as the most stable one of histamine free-base in solution. The order of stability is here completely altered with respect to previous results in gas phase, which presented the N1H-gauche conformer as the most stable structure. Our results also differ from previous Monte Carlo simulations, which obtained the N3H-trans conformer as the most stable in solution, although in this case, the histamine structures were kept frozen to the gas-phase geometry. Vibrational spectroscopy results support theoretical ones. Quadratic force fields for the four histamine conformers were achieved under the same calculation methodology. Previously, a general assignment of the infrared and Raman spectra of histamine free-base was proposed for solutions in both natural and heavy water. This allowed us to compare the experimental set of both wavenumbers and infrared intensities with the calculated ones. The lowest quadratic mean wavenumber deviation was obtained for the N3H-gauche conformer, in agreement with the free-energy calculations. Calculated infrared intensities were also compared to the experimental intensities, supporting this conformer as the relevant structure of histamine free-base in solution. It was then selected for a complete vibrational dynamics calculation, starting with a low-level scaling procedure to fit the set of calculated wavenumbers to the experimental values. The results were presented in terms of quadratic force constants, potential energy distribution, and normal modes.  相似文献   

15.
A full structural search of the canonical, zwitterionic, protonated and deprotonated lysine conformers in gas phase is presented. A total of 17,496 canonical, 972 zwitterionic, 11,664 protonated and 1458 trial deprotonated structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were initially optimized at the AM1 level, and the resulting structures were determined at the B3LYP/6-311G* level. A total of 927 canonical, 730 protonated and 193 deprotonated conformers were found, but there were no stable zwitterionic structures in the gas phase. The most stable conformers of the canonical, protonated and deprotonated lysine were further optimized at the B3LYP/6-311++G** level. The energies of the most stable structures were determined at the MP2/6-311G(2df,p) level and the vibrational frequencies were calculated at the B3LYP/6-311++G** level. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, vertical ionization energies, enthalpies, Gibbs free energies and conformational distributions of gaseous lysine were presented. Numerous new structures are found and the lowest-energy lysine conformer is more stable than the existing one by 1.1 kcal/mol. Hydrogen bonds are classified and may cause significant red-shifts to the associated vibrational frequencies. The calculated proton affinity/dissociation energy and gas-phase basicity/acidity are in good agreement with the experiments. Calculations are also presented for the canonical lysine–H2O and zwitterionic lysine–H2O clusters. Interaction between lysine and H2O significantly affects the relative conformational stabilities. Only one water molecule is sufficient to produce the stable zwitterionic structures in gas phase. The lowest-energy structure is found to be zwitterions when applying the conductor-like polarized continuum solvent model (CPCM) to the lysine–H2O complexes.  相似文献   

16.
We present a systematic density functional investigation on the prediction of the 13C, 15N, 17O, and 19F NMR properties of 23 molecules with 21 density functionals. Extensive comparisons are made for both 13C magnetic shieldings and chemical shifts with respect to the gas phase experimental data and the best CCSD(T) results. We find that the OPBE and OPW91 exchange-correlation functionals perform significantly better than some popular functionals such as B3LYP and PBE1PBE, even surpassing, in many cases, the standard wavefunction-based method MP2. Further analysis has been performed to explore the individual role played by various exchange and correlation functionals. We find that the B88 and PBE exchange functionals have a too strong tendency of deshielding, leading to too deshielded magnetic shielding constants; whereas the OPTX exchange functional performs remarkably well. We claim that the main source of error arises from the exchange functional, but correlation functional also makes important contribution. We find that the correlation functionals may be grouped into two classes. class A, such as LYP and B98, leads to deshielded NMR values, deteriorating the overall performance; whereas class B, such as PW91 and PBE, generally increases the absolute shieldings, which complements the exchange functionals, leading to improved results in the calculation of NMR data.  相似文献   

17.
An extensive exploration of the conformational space has been carried out to characterize all possible gas phase structures of leucine. A total of 324 unique trial structures for canonical leucine were generated by considering all possible combinations of single bond rotamers. All trial structures were optimized at the B3LYP/6-311G* level of the DFT method. A total of 77 unique and stationary canonical conformers were found. Further, 15 most stable conformers were reoptimized at B3LYP/6-311++G** level and their respective relative energies, vertical ionization energies, hydrogen bonding patterns, rotational constants and dipole moments were calculated. A single point energy calculations for leucine conformers have also been done at both B3LYP/6-311++G(2df, p) and MP2/6-311++G(2df, p) levels. The good agreement between our estimates of rotational constants for two most stable conformers and available experimental measurements supports the reliability of the B3LYP/6-311++G** level of theory for describing the conformational behavior of leucine molecule. The proton affinity and gas phase basicity were also determined. Using the statistical approach, conformational distributions at various temperatures have also been performed and analyzed. Vibrational spectra were also calculated. It is also observed that zwitterions of leucine are not stable in gas phase.  相似文献   

18.
The structures and relative stabilities of the complexes formed by uracil and its sulfur derivatives, namely, 2-thio-, 4-thio, and 2,4-dithio-uracil when interacting with Ca(2+) in the gas phase have been analyzed by means of density functional theory (DFT) calculations carried out at the B3LYP/6-311++G(3df,2p)//B3LYP/6-31+G(d,p) level. For uracil and 2,4-dithiouracil, where the two basic sites are the same, Ca(2+) attachment to the heteroatom at position 4 is preferred. However, for the systems where both types of basic centers, a carbonyl or a thiocarbonyl group, are present, Ca(2+)-oxygen association is favored. The most stable complexes correspond to structures with Ca(2+) bridging between the heteroatom at position 2 of the 4-enol (or the 4-enethiol) tautomer and the dehydrogenated ring nitrogen, N3. The enhanced stability of these enolic forms is two-fold, on the one hand Ca(2+) interacts with two basic sites and on the other triggers a significant aromatization of the ring. Besides, Ca(2+) association has a clear catalytic effect on the tautomerization processes which connect the oxo-thione forms with the enol-enethiol tautomers. Hence, although the enol-enethiol tautomers of uracil and its thio derivatives should not be observed in the gas phase, the corresponding Ca(2+) complexes are the most stable species and should be accessible, because the tautomerization barriers are smaller than the Ca(2+) binding energies.  相似文献   

19.
6-巯基嘌呤互变异构体的密度泛函理论计算   总被引:8,自引:0,他引:8  
李宝宗 《化学学报》2004,62(11):1075-1079,M006
在密度泛函B3LYP/6-311G水平下,对8种气相和水相中可能存在的6-巯基嘌呤异构体进行了几何构型的全自由度优化,并计算出它们的总能量、焓、熵、吉布斯自由能.Onsager反应场溶剂模型用于水相的计算.计算结果表明,6-巯基嘌呤在气相和水相中主要以硫酮形式存在.在气相中,硫酮.N(7)(H)要比硫酮-N(9)(H)更稳定,而在水相中,则硫酮-N(9)(H)要比硫酮-N(7)(H)更稳定.计算结果同已有实验结果一致.6-巯基嘌呤的熵效应小,对互变异构平衡几乎没有显著的影响,而焓变对互变异构产生了主要的影响.较详细地讨论了水溶剂化作用对异构体的能量、几何结构、电荷分布和偶极矩的影响,溶剂化吉布斯自由能与异构体的气相偶极矩存在相关性.  相似文献   

20.
The molecular structure and intramolecular hydrogen bond energy of 18 conformers of 3‐imino‐propenyl‐amine were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set. The atom in molecules or AIM theory of Bader, which is based on the topological properties of the electron density (ρ), was used additionally and the natural bond orbital (NBO) analysis was also carried out. Furthermore calculations for all possible conformations of 3‐imino‐propenyl‐amin in water solution were also carried out at B3LYP/6‐311++G** and MP2/6‐311++G** levels of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the imine–amine conformers of this compound are more stable than the other conformers. B3LYP method predicts the IMA‐1 as global minimum. This stability is mainly due to the formation of a strong N? H···N intramolecular hydrogen bond, which is assisted by π‐electrons resonance, and this π‐electrons are established by NH2 functional group. Hydrogen bond energies for all conformers of 3‐imino‐propenyl‐amine were obtained from the related rotamers methods. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号