首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxynitrite (ONOO(-)) is a highly reactive species implicated in the pathology of numerous diseases and there is currently great interest in developing fluorescent probes that can selectively detect ONOO(-) in living cells. Herein, a polymeric micelle-based and cell-penetrating peptide-coated fluorescent nanoprobe that incorporates ONOO(-) indicator dye and reference dye for the ratiometric detection and imaging of ONOO(-) has been developed. The nanoprobe effectively avoids the influences from enzymatic reaction and high-concentration ·OH and ClO(-). The improved ONOO(-) selectivity of the nanoprobe is achieved by a delicate complementarity of properties between the nanomatrix and the embedded molecular probe (BzSe-Cy). This nanoprobe also has other attractive properties, such as good water solubility, photostability, biocompatibility, and near-infrared excitation and emission. Fluorescence imaging experiments by confocal microscopy show that this nanoprobe is capable of visualizing ONOO(-) produced in living cells and it exhibits very low toxicity and good membrane permeability. We anticipate that this technique will be a potential tool for the precise pathological understanding and diagnosis of ONOO(-)-related human diseases.  相似文献   

2.
We have found a specific reaction between ketone 1 and peroxynitrite (ONOO-), rather than other reactive oxygen species and reactive nitrogen species generated in the biological system. On the basis of this reaction, we have successfully developed a new fluorescent probe HKGreen-1, which is highly selective for the detection of peroxynitrite in living cells. Before the oxidation with peroxynitrite, the dichlorofluorescein part is masked and the probe is nonfluorescent. However, upon reaction with peroxynitrite, the fluorophore is released, resulting in strong enhancement in fluorescence intensity.  相似文献   

3.
4.
A new rhodamine B-based fluorescent probe for the hypochlorite anion (OCl(-)) has been designed, synthesized, and characterized. The probe comprises a spectroscopic unit of rhodamine B and an OCl(-)-specific reactive moiety of dibenzoylhydrazine. The probe itself is nearly nonfluorescent because of its spirolactam structure. Upon reaction with OCl(-), however, a largely enhanced fluorescence is produced due to the opening of the spirolactam ring by the oxidation of the exocyclic hydrazide and subsequently the formation of the hydrolytic product rhodamine B. Most notably, the fluorescence-on reaction shows high sensitivity and extremely high selectivity for OCl(-) over other common ions and oxidants, which makes it possible for OCl(-) to be detected directly in their presence. In addition, the reaction mechanism has been investigated and proposed. The OCl(-) anion selectively oxidizes the hydrazo group in the probe, and forms the analogue of dibenzoyl diimide, which in turn hydrolyzes and releases the fluorophore. The reaction mechanism that is described here might be useful in developing excellent spectroscopic probes with cleavable active bonds for other species.  相似文献   

5.
A new 2,6-bis(5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazolin-6-yl)-4-methylphenol (1) serves as a highly selective and sensitive fluorescent probe for Zn(2+) in a HEPES buffer (50 mM, DMSO:water = 1:9 (v/v), pH = 7.2) at 25 °C. The increase in fluorescence in the presence of Zn(2+) is accounted for by the formation of dinuclear Zn(2+) complex [Zn(2)(C(35)H(25)N(6)O)(OH)(NO(3))(2)(H(2)O)] (2), characterized by X-ray crystallography. The fluorescence quantum yield of the chemosensor 1 is only 0.019, and it increases more than 12-fold (0.237) in the presence of 2 equiv of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to be either unchanged or weakened. By incubation of cultured living cells (A375 and HT-29) with the chemosensor 1, intracellular Zn(2+) concentrations could be monitored through selective fluorescence chemosensing.  相似文献   

6.
Hou F  Huang L  Xi P  Cheng J  Zhao X  Xie G  Shi Y  Cheng F  Yao X  Bai D  Zeng Z 《Inorganic chemistry》2012,51(4):2454-2460
A novel selective fluorescent chemosensor based on an 8-hydroxyquinoline-appended fluorescein derivative (L1) was synthesized and characterized. Once combined with Cu(2+), it displayed high specificity for sulfide anion. Among the various anions, only sulfide anion induced the revival of fluoresecence of L1, which was quenched by Cu(2+), resulting in "off-on"-type sensing of sulfide anion. What's more, the sensor was retrievable to indicate sulfide anions with Cu(2+), and S(2-), in turn, increased. With the addition of Cu(2+), compound L1 could give rise to a visible pink-to-yellow color change and green fluorescence quenching. The resulting yellow solution could change to pink and regenerate to green fluorescence immediately upon the addition of sulfide anion; however, no changes were observed in the presence of other anions, including CN(-), P(2)O(7)(4-), and other forms of sulfate, making compound L1 an extremely selective and efficient sulfide chemosensor. The signal transduction occurs via reversible formation-separation of complex L1Cu and CuS. What's more, the biological imaging study has demonstrated that the chemosensor can detect sulfur anions in biological systems at a relatively low concentration.  相似文献   

7.
A novel turn-on fluorescent nanoprobe using lanthanide-doped up-conversion nanoparticles (UCNPs) and hexagonal cobalt oxyhydroxide (CoOOH) nanofl akes were prepared for monitoring ascorbic acid in fruit samples.  相似文献   

8.
A simple but highly selective colorimetric and ratiometric fluorescent chemodosimeter was designed and synthesized to detect fluoride ions (F(-)) in aqueous solution and living cells by virtue of the strong affinity of F(-) toward silicon.  相似文献   

9.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

10.
Abstract

A new coumarin-based probe (HgP) with two “S” groups was designed and synthesized The probe HgP exhibited a fast response time (<2?min) and high selectivity (DL, 2.2?×?10?7?mol/L). Furthermore, its capability of biological application was stu died, and the results showed that it could be applied to recognize Hg2+ in living cells (HK2 cells).  相似文献   

11.
Dopamine exhibits intriguing reactivity with silver nanoparticles through Ag-catechol interaction, which results in non-crosslinking AgNP aggregation, thus providing a novel approach for colorimetric detection of dopamine with high sensitivity and selectivity.  相似文献   

12.
A rhodamine spirolactam derivative (1) is developed as a colormetric and fluorescent probe for trivalent aluminum ions (Al3+). It exhibits a highly sensitive “turn-on” fluorescent response toward Al3+ with a 70-fold fluorescence intensity enhancement under 2 equiv. of Al3+ added. The probe can be applied to the quantification of Al3+ with a linear range covering from 5.0 × 10−7 to 2.0 × 10−5 M and a detection limit of 4.0 × 10−8 M. Most importantly, the fluorescence changes of the probe are remarkably specific for Al3+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the experiment results show that the response behavior of 1 towards Al3+ is pH independent in neutral condition (pH 6.0–8.0) and the response of the probe is fast (response time less than 3 min). In addition, the proposed probe has been used to detect Al3+ in water samples and image Al3+ in living cells with satisfying results.  相似文献   

13.
通过缩合反应制备了一例席夫碱荧光探针2-喹喔啉甲醛缩2-吡啶酰肼(1),使用核磁共振氢谱和碳谱及质谱等手段表征了探针的结构。荧光光谱分析表明,探针1自身无荧光,而Zn2+能够导致其在500 nm处出现强发射峰。该荧光增强能够在常见阳离子中选择性检测 Zn2+,检测限低至 0.16 μmol·L-1。通过核磁、质谱和紫外等手段推测了探针 1与 Zn2+可能的配位模式。通过单晶X射线衍射解析了1-Zn2+配合物的晶体结构,进一步确认了探针的配位行为。1-Zn2+晶体中探针分别采取ONN和NN配位模式螯合2个Zn2+,并由桥联CH3O-和Cl-连接形成一维链状结构。此外,该探针还可用于活细胞中Zn2+的检测。  相似文献   

14.
《Arabian Journal of Chemistry》2020,13(12):8697-8707
A dipodal fluorescent probe 3, with imine and hydroxyl moieties as binding sites, has been synthesized and characterized with spectroscopic methods, single-crystal X-ray techniques, and DFT. The synthesized probe 3 (φ = 0.0028) showed highly sensitive and highly specific fluorescent ‘turn-on’ effect (λem = 453 nm) for the 1:1 binding with Fe3+ ions to form probe 3.Fe3+ complex (φ = 0.203) in semi-aqueous medium (acetonitrile:water (50:50; v/v)) and live cells. The 1:1 binding stoichiometry of probe 3 and Fe3+ ions was proposed by DFT calculations and confirmed by the NMR spectroscopy, crystal structures of probe 3 and 3.Fe3+ complex, and mass spectrum of probe 3.Fe3+ complex. The stability of probe 3.Fe3+ complex in a wide pH range (pH 2–12) and reversibility for binding with Fe3+ ions in the presence of EDTA indicates that it can be an effective chemosensor for the detection of Fe3+ ions in various samples, including living cells. Importantly, with the LOD of 21.5 nM for the detection of Fe3+ ions, probe 3 did not show any interference from potentially competing ions even at a 1:3 ratio, indicates its biocompatibility. The nanomolar limit of detection (21.5 nM), cell permeability, and low cytotoxicity allows the probe 3 to be an excellent tool for the live-cell imaging and detection of ferric ions in live cells.  相似文献   

15.
Tetrabromobisphenol A is the most widely used brominated flame retardant. A sensitive and selective enzyme-linked immunosorbent assay (ELISA) for the detection of tetrabromobisphenol A was developed. The limit of detection and the inhibition half-maximum concentration of tetrabromobisphenol A in phosphate buffered saline with 10% methanol were 0.05 and 0.87 ng mL−1, respectively. Cross-reactivity values of the ELISA with a set of important brominated flame retardants including tetrabromobisphenol A-bis(2,3-dibromopropylether), 2,2′,6,6′-tetrabromobisphenol A diallyl ether, hexabromocyclododecane, 1,2-bis(pentabromodiphenyl) ethane, 1,2-bis(2,4,6 tribromophenoxy) ethane, bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate, and polybrominated diphenyl ethers were <0.05%. Concentrations of tetrabromobisphenol A determined by ELISA in the soils from farmlands, the soils from an e-waste recycling site, and the sediments of a canal were in the range of non-detectable–5.6 ng g−1, 26–104 ng g−1 and 0.3–22 ng g−1 dw, respectively, indicating the ubiquitous pollution of tetrabromobisphenol A. The results of this assay for 16 real world samples agreed well with those of the liquid chromatography–tandem mass spectrometry method, indicating this ELISA is suitable for screening of tetrabromobisphenol A in environmental matrices.  相似文献   

16.
A coumarinocoumarin-based fluorescent probe,JCCA,was developed for the detection of N2 H4.JCCA exhibited a fast turn-on fluorescence enhancement in response to N2 H4 with good selectivity,sensitivity and a detection limit of 7.4 nmol/L.Significantly,JCCA displayed a good capability for visualizing N2 H4 in living cells and zebra fish.  相似文献   

17.
Ma  Liling  Sun  Shan  Wang  Yuhui  Jiang  Kai  Zhu  Jiali  Li  Jun  Lin  Hengwei 《Mikrochimica acta》2017,184(10):3833-3840
Microchimica Acta - The authors describe a fluorometric nanoprobe for hypochlorite ion. It was prepared by covalently linking o-phenylenediamine to graphene quantum dots (GQDs). The probe displays...  相似文献   

18.
On the basis of BODIPY platform, a terpyridyl-substituent BODIPY-Copper complex (Cu(II)-BTPY) was rationally designed and synthesized as a redox reaction fluorescent sensor for detecting HNO over reactive oxygen species (ROS) and reactive nitrogen species (RNS) with impressive selectivity in living cells under mild and neutral conditions. The BTPY exhibits relatively high fluorescence quantum efficiency as much as 34.8% and presents large stokes shift, about 62 nm. When a series of transition metal ions were exploited to investigate the fluorescence quench towards BTPY, copper ion (Cu2+) gave the optimal result. After the fluorescence of the probe being effectively quenched in the presence of Cu2+, it can be in turn recovered through the reduction of Cu2+ into Cu+ by HNO accompanying with a visually observable fluorescence response. Still, the sensing mechanism was evidently confirmed by EPR and ESI-MS measurement. In addition, the employment of BTPY for imaging dyes was also presented in vivo.  相似文献   

19.
通过缩合反应制备了一例席夫碱荧光探针2-喹喔啉甲醛缩2-吡啶酰肼(1),使用核磁共振氢谱和碳谱及质谱等手段表征了探针的结构。荧光光谱分析表明,探针1自身无荧光,而Zn2+能够导致其在500 nm处出现强发射峰。该荧光增强能够在常见阳离子中选择性检测Zn2+,检测限低至0.16μmol·L-1。通过核磁、质谱和紫外等手段推测了探针1与Zn2+可能的配位模式。通过单晶X射线衍射解析了1-Zn2+配合物的晶体结构,进一步确认了探针的配位行为。1-Zn2+晶体中探针分别采取ONN和NN配位模式螯合2个Zn2+,并由桥联CH3O-和Cl-连接形成一维链状结构。此外,该探针还可用于活细胞中Zn2+的检测。  相似文献   

20.
A new rhodamine B derivative T1 has been rationally synthesized and displayed selective Pd(Ⅱ)-amplified absorbance and fluorescence emission above 540 nm in methanol–water. Upon the addition of Pd(Ⅱ), the spirolactam ring was unfolded and a 1:1 metal-ligand complex formed, which can be used for ‘‘naked-eyes" detection. In addition, fluorescence imaging experiments of Pd~(2+) in HepG2 living cells showed its valuable application in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号