首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new sensitive chemiluminescence (CL) method combined with continuous flow injection analysis is described for the determination of Cr(VI). Strong CL signals were generated by Cr(VI)-catalysed oxidation of gallic acid in the presence of potassium permanganate and hydrogen peroxide. Effects of reagent concentrations, temperature, pH, flow rates, mixing coil length and mixing flow sequences on the chemiluminescence intensity were studied. Under the optimised experimental conditions, the relationship between the logarithm of concentration (log?C) of Cr(VI) and the logarithm of intensity (log?I) is linear over the range of 2?×?10?11 – 5?×?10?4?mol?L?1, with the detection limit (3σ) of 4?×?10?12?mol?L?1. Relative standard deviation of ten measurements of 1?×?10?9?mol?L?1 Cr(VI) is 1.7%. This flow injection analysis (FIA) system proved to be able to analyse up to 40 samples h?1. Effects of various interferences possibly present in the water samples were investigated. Most cations and anions, as well as organic compounds, did not interfere with the determination of Cr(VI) in water samples. The experimental results obtained for chromium in reference materials were also in good agreement with the certified values.  相似文献   

2.
A multisyringe flow injection system with spectrophotometric detection is presented as a fast, robust and low-reagent consumption system for the determination of azinphos methyl (AzMe) in water samples. Determination is based on the Griess reaction. The analyte is hydrolyzed and the reaction product reacts with nitrite in acid medium to form the diazonium salt that reacts further with 1-naphtol reagent to produce an azo compound. The azo derivative is spectrophotometrically monitored at 485 nm. The influence of several chemical and flow variables has been investigated. Under the optimum analytical conditions, the linearity of the calibration curve for AzMe ranges from 1 to 32 μg mL?1. The detection limit is 0.17?µg mL?1, and recoveries between 95 to 109% have been obtained. The repeatability (RSD) is 0.8% for a 10?μg mL?1 solution, and the injection throughput is seven samples h?1. The system has been satisfactorily applied to the determination of AzMe in spiked river and dam water samples. The results were in agreement at the 95% confidence level with those obtained by HPLC.  相似文献   

3.
Tryptophan is an important amino acid for humans with a significant role in cell metabolism. Depletion of tryptophan in the human body may contribute to diseases and development of disorders among the human population. It is, therefore, very important to have a reliable, stable, sustainable, and cost-effective analytical method for the determination of tryptophan. Tryptophan was determined using sequential injection–zone fluidics analysis with luminol–hydrogen peroxide and the Firefly with its unique liquid core waveguide flow-cell design as chemiluminescence tubular reactor with a high-sensitivity photomultiplier tube. This was based on an intense chemiluminescence formation of tryptophan in luminol–hydrogen peroxide inside the tubular reactor for measurement. The chemiluminescence intensity was linear with tryptophan in the range of 1.0?×?10?6 to 1.0?×?10?3?mol/L, and the limit of detection was 7.5?×?10?7?mol/L. The precision for the method was 3.6% (relative standard deviation) for six measurements of 1.0?×?10?4?mol/L tryptophan. The proposed method has been used to determine tryptophan in pharmaceutical formulations. The system is relatively fast for online assays. Eighty seconds are required to complete one cycle providing a throughput of 45 samples/h. The proposed sequential injection analysis–zone fluidics–chemiluminescence system for the assay of tryptophan in certain specific pharmaceutical capsules is simple, reliable, sustainable, and convenient with relatively low-cost consumption of reagents.  相似文献   

4.
《Analytical letters》2012,45(1-3):340-348
A flow injection spectrophotometric procedure with symmetric merging zones for dipyrone determination in pharmaceutical formulations is proposed. The determination is based on the formation of a blue complex (monitored at a wavelength of 642 nm) yield in the complexation reaction of dipyrone with Fe(III) in acid medium. Under optimum conditions, a calibration curve was obtained from 3.5 to 281 mg L?1 with a detection limit of 2.8 mg L?1 and the samples throughput was 80 h?1. The analytical results obtained for commercial formulation samples by applying the proposed method were in good agreement with labeled values and those obtained by a comparative procedure at a 95% confidence level.  相似文献   

5.
An SPE-HPTLC method for simultaneous identification and quantification of seven pharmaceuticals in production wastewater was optimized and validated. The studied compounds were enrofloxacine, oxytetracycline, trimethoprim, sulfamethazine, sulfadiazine, sulfaguanidine and penicillin G/procaine. The method involves solid-phase extraction on hydrophilic-lipophilic balance cartridges with methanol and HPTLC analysis of extracts on CN modified chromatographic plates followed by videodensitometry at 254 and 366 nm. Optimization of chromatographic separation was performed by systematic variation of the mobile phase composition using genetic algorithm approach and the optimum mobile phase composition for TLC separation was 0.05 M H2C2O4:methanol = 0.81:0.19 (v/v). Linearity of the method was demonstrated in the ranges from 1.5 to 15.0 μg L−1 for enrofloxacine, 100–500 μg L−1 for oxytetracycline, 150–600 μg L−1 for trimethoprim, 300–1100 μg L−1 for sulfaguanidine and 100–400 μg L−1 for sulfamethazine, sulfadiazine and penicillin G/procaine with coefficients of determination higher than 0.991. Mean recoveries ranged from 74.6 to 117.1% and 55.1 to 108.0% for wellspring water and production wastewater, respectively. Only sulfaguanidine showed lower results. The described method has been applied to the determination of pharmaceuticals in wastewater samples from pharmaceutical industry.  相似文献   

6.
《Analytical letters》2012,45(12):2317-2328
Abstract

Rapid, simple, and accurate spectrophotometric method is presented for the determination of ibuprofen by batch and flow injection analysis methods. The method is based on ibuprofen competitive complexation reaction with phenolphthalein‐β‐cyclodextrin (PHP‐β‐CD) inclusion complex. The increase in the absorbance of the solution at 554 nm by the addition of ibuprofen was measured. Ibuprofen can be determined in the range 8.0×10?6 ?3.2×10?4 and 2.0×10?5?5.0×10?3 mol l?1 by batch and flow methods, respectively. The limit of detection and limit of quantification were 6.19×10?6 and 2.06×10?5 mol l?1 for batch and 1.77×10?5 and 5.92×10?5 mol l?1 for flow method, respectively. The sampling rate in flow injection analysis method was 120±5 samples h?1. The method was applied to the determination of pharmaceutical formulations.  相似文献   

7.
《Electroanalysis》2005,17(8):701-705
An inexpensive and easy to construct miniaturized biosensor is described for the determination of uric acid in biological fluids. The amperometric biosensor was prepared by using a carbon paste electrode prepared with uricase from Arthrobacter globiforms and tetracyanoquinodimethane as electron transfer mediator. When incorporated into a flow‐injection system it was enabled to perform 50 measurements/h of uric acid in the analytical range of 1–100 μmol dm?3 with a relative standard deviation of 0.20% (n=14). The system was applied to human serum samples analysis providing good data correlation with those obtained by the reference spectrophotometric method. A linear relationship AM (μmol dm?3)=1.02 (±0.05) SP (μmol dm?3) ?0.12 (±0.13) was obtained evidencing the absence of significant error. The constructed biosensor was successfully used for at least four months (250 assays) with only a 13% of decrease in the enzymatic activity.  相似文献   

8.
An automated spectrophotometric system is proposed for the determination of bismuth in well water samples, using multi-syringe flow injection analysis (MSFIA) and exploiting a liquid waveguide capillary cell (LWCC). This method is based on the colorimetric reaction of bismuth and methylthymol blue (MTB) in the presence of polyvinylpyrrolidone (PVP) in acid medium (0.1 mol L?1 HNO3). The Bi(III)–MTB complex was measured at 600 nm. The method was optimised by multivariate techniques. Some figures of merit of the proposed system are worth being highlighted, such as its wide linear working range (between 4.9 and 600 μg L?1), its low detection limit (1.5 μg L?1 of bismuth) and its high intra-day precision and inter-day precision (0.7% (n = 12) and 1.4% (n = 5), respectively, both expressed as RSD). Moreover, a high injection frequency of 30 h?1 is achieved, as the proposed analyser is a powerful tool for fast Bi(III) determination. The method developed was successfully validated by analysing reference samples (pharmaceutical samples) by comparing the results with those obtained by ICP-OES and it was satisfactorily applied to well water samples. Besides, the present system is miniaturised allowing in situ measurements in control processes and field analysis.  相似文献   

9.
《Electroanalysis》2003,15(7):601-607
A voltammetric method for the determination of the antibiotic oxytetracycline (OTC) in food samples is reported. Carbon fiber microelectrodes (CFMEs), which allow voltammetric measurements to be performed in a small volume (1 mL) of the analyte extract from the samples, are employed. Repeatable electroanalytical responses were obtained with no need of applying cleaning treatments to the CFME. Under the optimized square‐wave conditions, a linear calibration plot for OTC was obtained in the 1.0×10?6–1.0×10?4 mol L?1 range, with a detection limit of 2.9×10?7 mol L?1 (150 ng mL?1) OTC. The determination of OTC by a flow‐injection method with amperometric detection using a homemade flow cell specially designed to work with CFMEs, was also evaluated using pure acetonitrile as the carrier. The SW voltammetric method was applied to the determination of OTC in spiked milk and eggs samples, at 100 ng mL?1 and 200 ng g?1 levels, respectively. The procedure involved the extraction of the analyte in ethyl acetate, evaporation of the solvent and reconstitution of the residue in acetonitrile ?5.0×10?4 mol L?1 tetrabutylammonium perchlorate medium. Recoveries of 96±8 and 91±8% were obtained for milk and eggs, respectively, by applying the standard additions method.  相似文献   

10.
A rapid and automated method was developed for the determination of bacterial contamination and using Escherichia coli as a model microorganism. The method involves the use of a sensor connected to a flow injection (FI) system. The sample is introduced through a flow injection system into a piezoelectric quartz crystal (PQC) flow-cell. The resulting change of the resonance frequency is related to the bacterial contamination in the sample. The parameters associated with the flow system and the conditions for introducing the sample culture were optimized. Calibration curves are linear in the range from 3.2?×?107 to 3.2?×?109 cfu per mL-1, with a correlation coefficient of 0.997. The reproducibility was between 3.1 and 7.6%, and the detection limit is 1.1?×?107 cfu per mL-1. The method allowed the determination of bacterial contamination in residual water and in samples of milk and chicken stock within 5 h, while the conventional plate count method requires 24 to 48 h. The results obtained by these two methods are in good agreement.
Figure
A rapid and automated method for the determination of bacterial growth contamination is proposed and Escherichia coli was used as a model microorganism. The methodology involves the use of a piezoelectric quartz crystal (PQC) sensor connected to a flow injection (FI) system. The sample was introduced through the FI system and the resonant frequency change of PQC is related to the bacterial contamination in the sample. The method allows the successful determination of bacteria in residual water and several food samples  相似文献   

11.
A method is presented for magnetic solid phase extraction (MSPE) of tetracyclines in milk samples. The method involves the extraction and clean-up by silica based magnetic support dispersion on non-pretreated milk samples, followed by the magnetic isolation and desorption of the analytes by acidified methanol. The tetracyclines eluted from the magnetic support were determined simultaneously by flow injection analysis with spectrophotometric detection. Under optimal conditions, the linear range of the calibration curve ranges from 0.03 to 0.60 mg L?1, with a limit of detection of 10 μg L?1. Recoveries were determined for milk spiked at levels from 0.15 to 0.60 mg L?1. Average recoveries ranged from 91.0 to 97.0%, with a precision of <5.0% in all cases. The method was validated by comparing the results with those obtained by MSPE-HPLC and SPE-HPLC. No significant differences were observed (p?<?0.05)  相似文献   

12.
This work describes the development of a simple, fast and low-cost method for determining prazosin (PRA) in pharmaceutical samples by flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection using a boron-doped diamond film electrode. Electrochemical detection of PRA was optimized in phosphate buffer pH 4.0 by cyclic voltammetry, in which PRA presented two oxidation processes around at 0.97 and 1.40 V versus Ag/AgCl (3.0 mol L?1 KCl). In these conditions, PRA also showed one reduction process at ?0.75 V that is dependent on the oxidation processes. Thus, the determination of PRA by FIA-MPA detection consisted on the application of a two-potential waveform, E 1 (generator potential)?=?1.6 V/400 ms and E 2 (collector potential)?=??1.0 V/30 ms, with sample loop of 150 μL and flow rate of 3.0 mL min?1. The method showed good repeatability (RSD?<?3.0 %) and high analytical frequency (70 injections per h). The working linear range was obtained from 2 to 200 μmol L?1 with a limit of detection of 0.5 μmol L?1. The recovery tests in all samples were approximately 100 %, and the results were compared with chromatographic methods.  相似文献   

13.
Ciclopirox olamine is an antifungal agent widely used in dermatological formulations for topical application. The methods described for its determination usually present time-consuming sample treatment or require major human participation. Here we present a rapid flow system for the determination of ciclopirox olamine, based on the use of sequential injection analysis with terbium-sensitized luminescence detection. The reaction between terbium and the analyte is carried out on-line, recording the analytical signal at 300/545 nm (λexem). A detection limit of 15 µg L?1 and a R.S.D. of 3% (n = 10) were obtained. It is worth mentioning that the method here presented is the only one that uses a flow system for the determination of ciclopirox olamine.

The flow system was applied to the analysis of different pharmaceutical preparations available in the Spanish Pharmacopoeia. A recovery study was performed, obtaining satisfactory results. The high solution throughput obtained, 50 samples per hour, makes the method suitable for its implementation in pharmaceutical laboratories for routine analysis.  相似文献   

14.
A multisyringe flow injection system (MSFIA) coupled to a gas-diffusion cell has been developed for the conductometric determination of ammonium in different water samples. Operation strategies, membrane, reagent concentrations, and flow rates have been studied to optimize the sensitivity of detection and to fit the required working range. The proposed MSFIA system has been compared with former FIA and SIA systems using gas diffusion. The system was applied to the determination of ammonium in water samples of different matrices in order to evaluate its performance. These samples were coastal waters, pond waters, and compost aqueous extracts. Good recoveries of 102?±?13% were obtained and no significant differences with the reference methods were found. The system can be used for a wide concentration range of ammonia, from 0.075 to 360?mg?L?1, without sample dilution and with a precision better than 2% of RSD. The throughput of the method was 32 injections per hour.  相似文献   

15.
A simple and novel flow‐injection chemiluminescence (FI‐CL) method was established for the determination of 2‐Methoxyestradiol (2‐ME) in pharmaceutical preparations and biological fluids. The method was based on the significant enhancement of the CL from the KMnO4‐Na2SO3 reaction by 2‐ME in acidic medium. Under optimized conditions, the CL intensity was correlated linearly with concentration of 2‐ME in the range of 5.0 × 10?8‐5.0 × 10?6 M (r = 0.9995). The detection limit (3σ) of 2‐ME was 7.5 × 10?9 M and the relative standard deviation was 0.8% at 5.0 × 10?7 M 2‐ME (n = 8). The proposed method was successfully applied for the flow‐injection CL determination of 2‐ME in pharmaceutical preparations and biological fluids with the recoveries from 92.4 to 106.8%. The possible CL reaction mechanism was also discussed briefly.  相似文献   

16.
A simple and sensitive method for the determination of gatifloxacin (GFLX) is developed by using flow injection analysis with potassium permanganate-sodium sulfite chemiluminescence (CL) detection based on the energy transfer from GFLX to terbium(III). Intense signal instead of the weak CL produced by potassium permanganate-sulfite-GFLX system can be observed when Tb(III) is added to the system. A narrow and intense emission band at 545 nm arising from the excited-state Tb(III) was obtained. Under the optimum conditions, a linear range was 5.0 × 10?8 to 8.0 × 10?6 M and the detection limit was 3.2 × 10?9 M. The method has been successfully applied to the determination of gatifloxacin in drug formulations, urine and serum samples. There was no interference from some common excipients used in pharmaceutical preparations. The possible energy transfer mechanisms in the lanthanide complexes were discussed.  相似文献   

17.
In this work, a sensitive flow injection chemiluminescence (FI-CL) method for the determination of nematicide Fenamiphos in a rapid and simple way is proposed. Fenamiphos is first photodegraded in basic medium. These photofragments react with Ce(IV) providing the chemiluminescence signal. To the authors’ knowledge, no chemiluminescence method has been described in the literature for the determination of the nematicide Fenamiphos. All physical and chemical parameters in the flow injection chemiluminescence system were optimized in order to obtain the best sensitivity, selectivity and sample throughput. Before the injection of the sample in the FI-CL system, a preconcentration step with solid phase extraction C18 cartridges was performed. By applying solid phase extraction (SPE) to 250?mL of standard (final volume 10?mL), the linear dynamic range was between 3.4 and 60?µg?L?1, and the detection limit was 1?µg?L?1. When SPE was applied to 500?mL of standard (final volume 10?mL), the detection limit was 0.5?µg?L?1. These detection limits are below the emission limit value established by the Spanish Regulations of the Hydraulic Public Domain for pesticides (50?µg?L?1) and of the same order as the limit established for total pesticides (0.5?µg?L?1) at European Directive on the quality of water for human consumption. The sample throughput was 126 hour?1. Intraday and interday coefficients of variation were below 10% in all cases. No interference was registered in presence of usual concentrations of anions, cations and other organophosphorus pesticides. The method was successfully applied to the analysis of environmental water samples, obtaining recoveries between 96 and 107.5%.  相似文献   

18.
《Electroanalysis》2006,18(9):931-934
A flow injection analysis (FIA) method for the determination of paracetamol in pharmaceutical drugs using a gold electrode modified with a self‐assembled monolayer (SAM) of 3‐mercaptopropionic acid is described. At optimized experimental conditions the dynamic concentration range was 0.15 to 15.0 mg L?1 with a detection limit of 0.2 μg mL?1 (S/N=3). The repeatability of current responses for injections of 10 μmol L?1 paracetamol was evaluated to be 3.2% (n=30) and the analytical frequency was 180 h?1. The lifetime of the modified electrode was found to be 15 days. The results obtained by using the proposed amperometric method for paracetamol determination in four different drug samples compared well with those found by spectrophotometry.  相似文献   

19.
A simple and accurate flow injection analysis system coupled with spectrophotometric detector was developed for preconcentration and determination of europium(III) in aqueous samples. The developed flow system includes a europium preconcentration step in a column packed with Amberlite XAD-4 resin impregnated with nalidixic acid at pH 7.0. The europium complex was desorbed from the resin by 0.1 mol L?1 HCl and mixed with arsenazo-III solution (0.05 % solution in 0.1 mol L?1 HCl) and taken to the flow through cell of spectrophotometer where its absorbance was measured at 661 nm. The optimum preconcentration system, chemical and FIA variables were investigated. The preconcentration factors obtained were 115 and 500, detection limits of 0.43 and 0.1 μg L?1, sample throughputs of 40 and 10 were obtained for preconcentration time of 60 and 300 s respectively. The proposed system showed good precision and accuracy with relative standard deviation of 1.5 %. The method has been applied to the determination of europium(III) in real water samples and certified reference material IAEA-SL-1 (Lake sediment).  相似文献   

20.
《Analytical letters》2012,45(10):1863-1874
Abstract

A novel pilocarpinium ion selective membrane electrode is prepared, characterized and used in pharmaceutical analysis. The electrode system incorporates a PVC membrane with pilocarpine-reineckatc ion pair complex as an electroactive material. The electrode exhibits a fast near-Nernstian response for 10?1-4x10?5M pilocarpine over the pH range 4-6.5. The electrode displays a good selectivity for pilocarpine with respect to a number of foreign cations. Pilocarpine in various pharmaccutical preparations is determined either by direct potentiometry or potentiometric titration with NaTPB using the proposed sensor. Pilocarpinereineckate membrane is also used in a flow through sandwich cell as a detector for flow injection determination of pilocarpine. Results with an average recovery of 99% and a relative standard deviation of ± 0.3% are obtained. The data compare favorably with those obtained by the standard US Pharmacopeia method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号