首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel electrochemical device for the sensitive determination of dopamine was developed based on a carbon paste electrode with polymeric ferric sulfate doped in the carbon paste and a carboxyl-functionalized carbon nanotube thin film on the surface. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The conditions for the preparation of electrode were optimized. The carbon nanotubes were shown to be stable on the surface of carbon paste electrode. The novel electrochemical device provided excellent activity toward dopamine. Amperometry and differential pulse voltammetry were used for the determination of dopamine in pH 7.0 phosphate buffer with a long linear range from 0.8 to 261?µM and a detection limit of 0.2?µM. The modified electrode showed excellent repeatability, good stability, and satisfactory reproducibility, thus demonstrating potential for practical applications.  相似文献   

2.
A magnetically separable Fe3O4@Diaion HP-2MG composite was prepared using the coprecipitation method and the resulting magnetic Fe3O4@Diaion HP-2MG composites were used for the separation and preconcentration of trace amounts of dopamine. For the detection stage, square wave voltammetry on a disposable graphene–screen-printed carbon electrode was successfully used for the determination of dopamine. The graphene–screen-printed carbon electrode exhibited excellent electroanalytical performance for dopamine. The linear concentration range was from 0.8 to 80?µM and a detection limit of 50?nM for dopamine was obtained. In combination with the magnetic solid-phase extraction method, the sensor response was linearly proportional to the concentration of dopamine in the range of 0.01–6.0?µM with a correlation coefficient of approximately 0.9992. The detection limit of the sensor was found to be 5.0?nM by square wave voltammetry. The combined methodology was successfully applied to determine dopamine in urine samples with good recoveries ranging from 95 to 98%.  相似文献   

3.
Sadik Cogal 《Analytical letters》2018,51(11):1666-1679
Poly(3,4-ethylenedioxythiophene) was deposited on a reduced graphene oxide-decorated glassy carbon electrode through an electrochemical polymerization. The resulting glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was applied as an electrochemical biosensor for the determination of dopamine in the presence of ascorbic acid and uric acid. The material deposited on glassy carbon electrode was investigated in terms of morphology and structural analysis. The comparison of electrochemical behavior of the glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode with the glassy carbon electrode-graphene oxide, glassy carbon electrode-reduced graphene oxide, and glassy carbon electrode-poly(3,4-ethylenedioxythiophene) electrodes exhibited high electrocatalytic activity for dopamine detection. Electrochemical kinetic parameters of glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene), including the charge transfer coefficient α (0.49) and electron transfer rate constant ks (1.04), were determined and discussed. The glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was studied for the determination of dopamine by differential pulse voltammetry and exhibited a linear range from 19.6 to 122.8?µM with a sensitivity of 3.27?µA?µM?1?cm?2 and a detection limit of 1.92?µM. The developed biosensor exhibited good selectivity toward dopamine with high reproducibility and stability.  相似文献   

4.
A new chemically modified electrode is constructed based on iron(III) doped zeolite modified carbon paste electrode (Fe3+Y/ZMCPE). The new sensor could be used for the simultaneous determination of the biologically important compounds dopamine (DA) and tyrosine (Tyr). The measurements are carried out using differential pulse voltammetric (DPV) method. The prepared modified electrode shows voltammetric responses of high sensitivity, selectivity and stability for DA and Tyr under optimal conditions, which makes it a suitable sensor for simultaneous trace detection of DA and Tyr in solution. Application of the DPV method demonstrates that in the Briton Robinson buffer solutions (pH=5) containing 50 µmol/L Tyr, there is a linear relationship between the oxidation peaks and the concentrations of DA over the range of 0.1–200 µmol/L, with a detection limit of 0.05 µmol/L (S/N=3). For Tyr a linear correlation between oxidation peak current and concentration of Tyr over the range of 0.5–200 µmol/L (containing 50 µmol/L DA), with a detection limit of 0.08 µmol/L is obtained. The analytical performances of this sensor are evaluated for the detection of DA and Tyr in human serum and a medicine.  相似文献   

5.
A sensitive dopamine sensor was constructed based on the modified carbon paste electrode with methylthiouracil as a nucleophile in the 1,4‐Michael addition reaction. An ECE mechanism was suggested for dopamine oxidation at the modified electrode. Design of experiments was used in the optimization of variables. Under the optimum conditions, calibration graph was linear in the range of 0.20–15.0 µM with a detection limit of 73 nM. The relative standard deviations (n=5) for 0.50 µM of dopamine was 3.83 %. The selectivity of the sensor was also studied. The developed sensor was applied for analysis of pharmaceutical and biological samples.  相似文献   

6.
《Analytical letters》2012,45(17):3088-3099
Abstract

Iron nanoparticles (INPs) were dispersed in Nafion solution to obtain a homogeneous INP-Nafion dispersion, and then a drop of this dispersion was cast on the surface of a carbon paste electrode (CPE) to fabricate an INP-Nafion-modified electrode. The electrochemical behavior of dopamine (DA) at this modified electrode was studied by cyclic voltammetry in a pH 7.0 Britton-Robinson (B-R) buffer solution. The result showed that the modified CPE exhibited an obvious electrocatalytical response toward DA, with the anodic and cathodic peak potentials shifted negatively and positively respectively, and great enhance of the peak currents at the scan rate of 100 mV s?1. The effects of carbon paste constitution, amount of the dispersion, pH, and scan rate were investigated. Under the optimum experimental conditions, the peak currents determined by differential pulse voltammetry showed an excellent linear relationship with DA concentration in the range from 10 to 110 µM with the detection limit of 3.3 µM. In addition, ascorbic acid and some other possible interferents did not interfere with the voltammetric sensing of DA, and this method also had good stability and reproducibility.  相似文献   

7.
《Analytical letters》2012,45(6):996-1014
A novel electrochemical sensor for bisphenol A was developed through the combination of a molecular imprinting technique with a multiwalled carbon nanotube paste electrode. A molecularly imprinted polymer and nonimprinted polymer were synthesized in the presence and absence of bisphenol A, and then used to prepare the electrode. The bisphenol A imprinted polymer was applied as a selective recognition element in the electrochemical sensor. Differential pulse voltammetry was used to characterize the electrochemical behavior of bisphenol A at the modified electrodes. The results showed that the imprinted sensor had highest response for bisphenol A. Parameters including the carbon paste composition, pH, and adsorption time for the imprinted sensor were optimized. Under the optimized conditions, the differential pulse voltammetry peak current was linear with the concentration of bisphenol A from 0.08 to 100.0 µM, with a detection limit of 0.022 µM. The imprinted sensor for bisphenol A exhibited good selectivity, stability, and reproducibility. This sensor was successfully used for the determination of bisphenol A in real water samples.  相似文献   

8.
An electrochemical sensor for simultaneous quantification of Levodopa (L‐dopa) and Carbidopa (C‐dopa) using a β‐cyclodextrin/poly(N‐acetylaniline) (β‐CD/PNAANI) modified carbon paste electrode has been developed. Preconcentrating effect of β‐CD as well as its different inclusion complex stability with L‐dopa and C‐dopa was used to construct an electrochemical sensor for quantification of these important analytes. The overlapping anodic peaks of L‐dopa and C‐dopa at 810 mV on bare carbon paste electrode resolved in two well‐defined voltammetric peaks at 450 and 880 mV vs. Ag/AgCl, respectively, with a drastic enhancement of the anodic peak currents. Under optimized conditions, linear calibration curves were obtained in the ranges of 0.5–117 µM and 1.6–210 µM with detection limits down to 0.2 and 0.8 µM for L‐dopa and C‐dopa, respectively. The proposed electrode was successfully applied for the determination of L‐dopa /C‐dopa in pharmaceutical formulations and the results were in close agreement with the labeled values.  相似文献   

9.
An electrochemical sensor based on modification of carbon paste electrode by glutathione‐capped copper nanoclusters silica nanoparticles (CuNCs/SiO2NPs) composite for determination of dopamine in the presence of ascorbic acid was presented. Transmission electron microscopy, scanning electron microscopy, energy dispersive X‐Ray analysis, X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction and electrochemical impedance spectroscopy were used for characterization of the developed electrode. The electrochemical behavior of dopamine on CuNCs/SiO2NPs/carbon paste electrode was investigated by cyclic voltammetry and differential pulse voltammetry. Dopamine was determined in the range of 10.0 – 900.0 μM, and the limit of detection was obtained as 0.43 μM. The electrochemical behaviors of the coexisting electroactive species, which often cause interference with the determination of dopamine, were investigated. The results show that the developed electrode does not show any interference with respect to coexisting species, even in the presence of ascorbic acid. The developed electrochemical sensor was further employed for the determination of dopamine in human blood plasma, with a good recovery.  相似文献   

10.
The electrochemical response of sodium levo‐thyroxin (T4) at the surface of an edge plane pyrolytic graphite (EPPG) electrode is investigated using cyclic voltammetric technique in the presence of 0.1 M HCl as supporting electrolyte. T4 underwent totally irreversible oxidation at this system and a well‐defined peak at 821 mV was obtained. Compared to the signals obtained in the optimized conditions at bare glassy carbon and carbon paste electrodes, the oxidation current of T4 at an EPPG electrode was greatly enhanced. The electrochemical process of T4 was explored and the experimental conditions were optimized. The oxidation peak current represented a linear dependence on T4 concentration from 0.01 to 10 µM. The detection limit of 3 nM (S/N=3) was obtained for 250 s accumulation at 0.3 V. Determination of T4 in a synthetic serum sample demonstrated that this sensor has good selectivity and high sensitivity.  相似文献   

11.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

12.
A new chemically modified carbon paste electrode is fabricated to determine lead ion concentration in its trace level in aqueous media with differential pulse voltammetry (DPV). The best performance is obtained by the carbon paste electrode composition including 20% of dithiodibezoic acid (DDA), 80% of high purity graphite powder and 60?µL of colloidal gold nanoparticle (AuNP) solution. The proposed electrode has a wide linear calibration response from 1?×?10?9 to 6?×?10?5 M with a detection limit of 6.6?×?10?10?M, at pH 3.5. Seven replicate determination of 5?×?10?8?M of lead ion concentration gives a relative standard deviation of 3.33%. The modified sensor is applied to determine lead contents in some environmental and biological Samples with satisfactory results.  相似文献   

13.
An electrochemical sensor based on electropolymerizing o‐phenylenediamine (o‐PD) on a glassy carbon electrode (GCE) was developed for determination of reducing sugars. The molecular imprinted sensor was tested by differential pulse voltammetry (DPV) to verify the changes in peak currents of hexacyanoferrate. Under the optimum analytical conditions, the current change was linear to the logarithm of glucose and fructose concentration from 0.25 to 25 µM. The detection limit of glucose and fructose were 0.185 µM and 0.173 µM, respectively. Besides, the applicability of the sensitive sensor has been successfully evaluated by determining reducing sugars in the samples from sugarcane industries.  相似文献   

14.
Rapid and accurate determination of hydrogen peroxide is necessary in biochemistry and environmental science. In this paper, a sensitive hydrogen peroxide electrochemical sensor was developed by cyclic voltammetry deposition of polyaniline–copper nanocomposite film on a glassy carbon electrode. The synthesized polyaniline/Cu composites were characterized by scanning electron microscopy and X-ray diffraction. With a typical working potential of 0.4?V (versus Ag/AgCl) and a pH value of 6.0, the prepared electrochemical sensor achieved linear range of 1.0–500?µM for hydrogen peroxide detection. A relative standard deviation of 4.9% for n?=?7 and 10.0?µM of H2O2 and a limit of detection of 0.33?µM at a signal-to-noise ratio?=?3 were observed. The sensor was successfully used for the analysis of tap water, and a spiked recovery of 93.0?±?2.1% was obtained, further confirming the sensor’s accuracy and feasibility.  相似文献   

15.
In this paper, we report the fabrication of an amplified sensor to determine dopamine in the presence of morphine based on nano-MgO, multiwall carbon nanotubes, and an oxadiazole derivative. The electrochemical behavior and electrocatalyic activity of the sensor toward the oxidation of dopamine were investigated. Cyclic voltammetry was used to study the redox features of the sensor, and the results have shown that dopamine overpotential oxidation at the surface of the sensor was reduced to nearly 460 mV. The diffusion coefficient was estimated by chronoamperometry. Three segmented linear dynamic ranges over the range 0.05–5175.0 and detection limit of 0.021 μM for the quantification of dopamine were obtained using differential pulse voltammetry (DPV). The modified nanocomposite carbon paste electrode, which showed excellent sensitivity, selectivity, repeatability, and reproducibility, was satisfactorily employed to determine dopamine and morphine in actual samples.  相似文献   

16.
A gold (Au) nanoparticle-modified graphite pencil electrode was prepared by an electrodeposition procedure for the sensitive and rapid flow injection amperometric determination of hydrazine (N2H4). The electrodeposited Au nanoparticles on the pretreated graphite pencil electrode surface were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammograms showed that the Au nanoparticle-modified pretreated graphite pencil electrode exhibits excellent electrocatalytic activity toward oxidation of hydrazine because the highly irreversibly and broadly observed oxidation peak at +600?mV at the pretreated graphite pencil electrode shifted to ?167?mV at the Au nanoparticle pretreated graphite pencil electrode; in addition, a significant enhancement in the oxidation peak current was obtained. Thus, the flow-injection (FI) amperometric hydrazine sensor was constructed based on its electrocatalytic oxidation at the Au nanoparticle-modified pretreated graphite pencil electrode. The Au nanoparticle-modified pretreated graphite pencil electrode exhibits a linear calibration curve between the flow injection amperometric current and hydrazine concentration within the concentration range from 0.01 to 100?µM with a detection limit of 0.002?µM. The flow injection amperometric sensor has been successfully used for the determination of N2H4 in water samples with good accuracy and precision.  相似文献   

17.
A carbon paste electrode that was chemically modified with 3-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid (3,4-AA) was used as a selective electrochemical sensor for the detection of hydroxylamine. Cyclic voltammetry (CV), choronoamperometry (CHA) and square wave voltammetry (SWV) were used to investigate oxidation of hydroxylamine in aqueous solution. Under optimized concentration the electrocatalytic oxidation current peak for hydroxylamine increased linearly with concentration in the range of 0.025–10.0 μM. The detection limits for hydroxylamine was 0.012 μM. Finally, the modified electrode was applied to detection hydroxylamine in water samples.  相似文献   

18.
《Analytical letters》2012,45(10):1525-1536
Magnetic chitosan microspheres (MCMS) and thionine were incorporated in a modified electrode for the simultaneous sensitive determination of dopamine (DA) and uric acid (UA). Due to the unique properties of the MCMS and the electron mediation of thionine, this modified electrode showed excellent electrocatalytic oxidation toward dopamine and uric acid with a large separation of peak potentials and a significant enhancement of peak currents. However, the electrochemical behavior of ascorbic acid may be depressed at the modified electrode. Differential pulse voltammetry was used for the simultaneous sensitive determination of dopamine and uric acid in the presence of excess ascorbic acid at this modified electrode. The current responses showed excellent linear relationships in the range of 2–30 µM and 9–100 µM for dopamine and uric acid, respectively. The detection limits were estimated to be 0.5 µM and 2.3 µM for dopamine and uric acid, respectively. In addition, this modified electrode showed excellent repeatability, good stability, and satisfactory reliability, thus indicating potential for the practical applications.  相似文献   

19.
多金属氧酸盐作为一类阴离子簇合物,由于其结构的多样性和尺寸大小的可调变性,在电化学、催化和药学等领域引起了人们的广泛关注.本文制备了多酸Co(C15N6H12)2[PW12O38]·5H2O(Co[PW12O38])修饰碳糊电极并通过电化学阻抗谱、循环伏安法以及差分脉冲伏安法对多巴胺的传感性能进行了研究.对其制备条件和检测条件分别进行了优化.在优化条件下,制备的传感器对多巴胺具有良好的选择性和灵敏度的检测能力.多巴胺的线性响应范围为8.0x10-6 mol·L-1至3x10-5 mol·L-1,灵敏度为0.039 μA·(μmol·L-1)-1,检出限(S/N=3)为5.4 x10-6 mol·L-1. 制备的多酸修饰碳糊电极用于检测多巴胺表现出良好的稳定性和重现性,并且对抗坏血酸、尿酸等常见的干扰物质,具有良好的抗干扰性. 多酸修饰的碳糊电极制备过程简单方便,成本低,传感性能良好,对应用于电化学传感器检测多巴胺具备潜在的应用前景.   相似文献   

20.
A novel CdTe quantum dots‐modified carbon paste electrode (QDMCPE) was fabricated and used to study the electrooxidation of dopamine and uric acid and their mixtures by electrochemical methods. Using square wave voltammetry (SWV), a highly sensitive and simultaneous determination of dopamine and uric acid was explored at the modified electrode. SWV peak currents of dopamine and uric acid increased linearly with their concentrations in the ranges of 7.5×10?8–6.0×10?4 M, and 7.5×10?6–1.4×10?3 M, respectively. Finally this new sensor was used for determination of dopamine and uric acid in some real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号