首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fluorescent molecularly imprinted polymer-coated CdSe/ZnS quantum dots were prepared in an efficient one-step synthesis. Their application as fluorescent nanoparticles for the direct quantification of cholesterol in milk was characterized. The quantum dots were used as cores to produce fluorescence. The molecularly imprinted polymer shells provided specific binding sites for cholesterol. The system exhibited good linearity for cholesterol from 0.5 to 150?µg?mL?1, a low detection limit of 0.15?µg?mL?1, and acceptable reproducibility with a relative standard deviation of 4.2% for six replicates. The molecularly imprinted polymer-coated quantum dots were used to determine cholesterol in fortified milk. Recoveries were from 87.0 to 105.2% and a possible mechanism is proposed. The fluorescent molecularly imprinted polymer-coated quantum dots exhibited excellent selectivity and provide a simple, rapid, selective, and effective analytical approach.  相似文献   

2.
Novel core-shell molecularly imprinted polymers were prepared based on zinc oxide quantum dots for the determination of 2,4,6-trichlorophenol by fluorescence. Principally, ZnO quantum dots and 2,4,6-trichlorophenol were chosen as the core substrate and the template molecule, respectively. The specific recognition sites for 2,4,6-trichlorophenol were obtained during the polymerization process in presence of 3-aminopropyltriethoxysilane and tetraethylorthosilicate. Molecularly imprinted ZnO quantum dots were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy and the optical properties were evaluated by spectrofluorometry. Under the optimal conditions, molecularly imprinted ZnO quantum dots were successfully applied to the sensitive determination and selective recognition of 2,4,6-trichlorophenol in water. A linear relationship was obtained to cover the concentration range of 0–160?µmol?L?1 with a correlation coefficient of 0.9931 calculated by the Stern–Volmer equation. The products were used for the determination of 2,4,6-trichlorophenol in the water from local rural areas and the results strongly supported that the molecularly imprinted ZnO quantum dots were suitable for the determination of 2,4,6-trichlorophenol in real examples.  相似文献   

3.
A new sample preparation method based on microextraction in packed syringe was developed for preconcentration of quercetin prior to its spectrophotometric determination. Molecularly imprinted polymers as packing material was used for higher extraction efficiency. First, glass powder as support material because of low cost and available substrate was modified, and then molecularly imprinted polymers were synthesized by the sol–gel method using 3-aminopropyltriethoxysilane as a functional monomer and tetraethyl orthosilicate as cross-linker agent. The combination of a molecularly imprinted polymers and microextraction in packed syringe increased the selectivity and sensitivity. The surface morphology and functionality of the prepared molecularly imprinted polymers was characterized using Fourier-transform infrared spectroscopy, Field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and thermogravimetric analysis. Different influencing parameters on extraction efficiency such as effect of the number of sample sorption/desorption cycles, type and volume of desorption solvent, pH of the sample solution, and molecularly imprinted polymers amounts were optimized. Under the optimum condition, the proposed method displayed a linear range from 0.01 to 5 µg mL−1 and limit of detection 3.68 ng mL−1. Relative standard deviation for three replicate determination of 1 µg mL−1 quercetin was 2.1 %. The proposed method was applied successfully for the selective extraction of quercetin from tea and coffee samples.  相似文献   

4.
We present a novel electrochemical sensor based on an electrode modified with molecularly imprinted polymers for the detection of chlorpyrifos. The modified electrode was constructed by the synthesis of molecularly imprinted polymers by a precipitation method then coated on a glassy carbon electrode. The surface morphology of the modified electrode was characterized by using field‐emission scanning electron microscopy and transmission electron microscopy. The performance of the imprinted sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The imprinted electrochemical sensor displayed high repeatability, stability, and selectivity towards the template molecules. Under the optimal experimental conditions, the peak current response of the imprinted electrochemical sensor was linearly related to the concentration of chlorpyrifos over the range 1 × 10−10–1 × 10−5 mol/L with a limit of detection of 4.08 × 10−9 mol/L (signal‐to‐noise ratio = 3). Furthermore, the proposed molecularly imprinted electrochemical sensor was applied to the determination of chlorpyrifos in the complicated matrixes of real samples with satisfactory results. Therefore, the molecularly imprinted polymers based electrochemical sensor might provide a highly selective, rapid, and cost‐effective method for chlorpyrifos determination and related analysis.  相似文献   

5.
A new molecularly imprinted polymer (MIP) for levofloxacin was prepared by the combined use of methacrylic acid and protoporphyrin as functional monomers. The adsorption properties of resultant imprinted polymers were evaluated by equilibrium rebinding experiments. The highest binding capacity of levofloxacin achieved from the optimized imprinted polymer in acetonitrile was 246.26 µmol/g with an imprinting factor of 2.05. A ?uorescence quenching effect was observed when a protoporphyrin‐based imprinted polymer was incubated in the solutions of levofloxacin. The results indicated that the protoporphyrin‐based MIPs were able to create higher binding cavities for template compared with MIPs using only methacrylic acid as a functional monomer. It should be expected that the cooperative use of the protoporphyrin with supplemental different functional monomers may be an alternative to obtain MIP with the improvement of the selectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Molecularly imprinted polymers were prepared via β‐cyclodextrin‐stabilized oil‐in‐water Pickering emulsion polymerization for selective recognition and adsorption of erythromycin. The synthesized molecularly imprinted polymers were spherical in shape, with diameters ranging from 20 to 40 µm. The molecularly imprinted polymers showed high adsorption capacity (87.08 mg/g) and adsorption isotherm data fitted well with Langmuir model. Adsorption kinetics study demonstrated that the molecularly imprinted polymers acted in a fast adsorption kinetic pattern and the adsorption features of molecularly imprinted polymers followed a pseudo‐first‐order model. Adsorption selectivity analysis revealed that molecularly imprinted polymers had a much better specificity for erythromycin than that for spiramycin or amoxicillin, and the relative selectivity coefficient values on the bases of spiramycin and amoxicillin were 3.97 and 3.86, respectively. The Molecularly imprinted polymers also showed a satisfactory reusability after four times of regeneration. In addition, molecularly imprinted polymers exhibited good adsorption capacities for erythromycin under complicated environment, that is, river water and milk. These results proved that the as‐prepared molecularly imprinted polymers is a potent absorbent for selective recognition of erythromycin, and therefore it may be a promising candidate for practical applications, such as wastewater treatment and detection of erythromycin residues in food.  相似文献   

7.
Pyrethroids are similar to the natural pyrethrins produced by the flowers of pyrethrums that are effective insecticides but with potential toxicity. Here, a novel core–shell fluorescence probe for pyrethroids was prepared by precipitation polymerization. ZnO quantum dots and cyhalothrin were used as the substrate and template, respectively. Due to the formation of reversible specific recognition sites during copolymerization in the presence of acrylamide and ethyl glycol dimethacrylate, ZnO-based molecularly imprinted polymers containing cyhalothrin recognition sites were obtained. Transmission electron microscopy, infrared spectroscopy, and fluorescence spectroscopy were used to characterize the resulting ZnO-based imprinted polymers. The polymer microspheres were used to sensitively and selectively determine cyhalothrin. In addition, a linear relationship between the concentration of cyhalothrin and the fluorescence intensity was obtained from 0 to 80 µmol L?1 with a correlation coefficient of 0.9964 using the Stern–Volmer equation. The protocol was used for the determination of cyhalothrin in milk demonstrating the suitability of the methodology for practical sample analysis. The selective and sensitive fluorescence recognition, low production cost, and facile synthesis demonstrate attractive properties of ZnO-based molecularly imprinted polymers for specific molecule recognition.  相似文献   

8.
Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid‐Ti4+, the temperature‐sensitive monomer N‐isopropylacrylamide and the crosslinker N,N′‐methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor‐made peptides were measured by high‐performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β‐casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained.  相似文献   

9.
A new bovine serum albumin (BSA) surface imprinting method was developed by the in-corporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical ap-pearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template.The quenching of photoluminescence emissions is presumably due to the fluorescence reso-nance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step.The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.  相似文献   

10.
《Analytical letters》2012,45(6):996-1014
A novel electrochemical sensor for bisphenol A was developed through the combination of a molecular imprinting technique with a multiwalled carbon nanotube paste electrode. A molecularly imprinted polymer and nonimprinted polymer were synthesized in the presence and absence of bisphenol A, and then used to prepare the electrode. The bisphenol A imprinted polymer was applied as a selective recognition element in the electrochemical sensor. Differential pulse voltammetry was used to characterize the electrochemical behavior of bisphenol A at the modified electrodes. The results showed that the imprinted sensor had highest response for bisphenol A. Parameters including the carbon paste composition, pH, and adsorption time for the imprinted sensor were optimized. Under the optimized conditions, the differential pulse voltammetry peak current was linear with the concentration of bisphenol A from 0.08 to 100.0 µM, with a detection limit of 0.022 µM. The imprinted sensor for bisphenol A exhibited good selectivity, stability, and reproducibility. This sensor was successfully used for the determination of bisphenol A in real water samples.  相似文献   

11.
A highly sensitive and convenient electrochemical sensor, based on surface molecularly imprinted polymers and multiwalled carbon nanotubes, was successfully developed to detect chlorpyrifos in real samples. In order to solve the problems like uneven shapes, poor size accessibility, and low imprinting capacity, the layer of the molecularly imprinted polymer was prepared on the surface of silica nanospheres. Moreover, the doping of multiwalled carbon nanotubes greatly improved the electrical properties of developed sensor. Under the optimal conductions, the electrochemical response of the sensor is linearly proportional to the concentration of chlorpyrifos in the range of 5.0 × 10?12‐5.0 × 10?8 mol/L with a low detection limit of 8.1 × 10?13 mol/L. The prepared sensor exhibited multiple advantages such as low cost, simple preparation, convenient use, excellent selectivity, and good reproducibility. Finally, the prepared sensor was successfully used to detect chlorpyrifos in vegetable and fruit.  相似文献   

12.
In this study, we have developed a method to assess adenosine 5?‐triphosphate by adsorptive extraction using surface adenosine 5′‐triphosphate‐imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5′‐triphosphate as a template, functional monomers (methacrylic acid, N‐isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non‐imprinted polymers were measured using high‐performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5′‐triphosphate in the urine. High binding affinity (QMIP, 42.65 µmol/g), and high selectivity and specificity to adenosine 5′‐triphosphate compared to other competitive nucleotides including adenosine 5?‐diphosphate, adenosine 5?‐monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP, 100.3 µmol/g) and 2.51 for synthetic urine (QMIP, 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5′‐triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5′‐triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.  相似文献   

13.
Two anthracene molecularly imprinted nanoparticle polymers namely; An–MINP1 and An–MINP2, were synthesized using the precipitation polymerization method. An–MINPs were used for selective separation of anthracene from aqueous solutions. The data revealed that the maximum binding capacity of An–MINPs for anthracene were 320.8 and 374.3 mg g?1 for An–MINP1 and An–MIPN2, respectively, compared with 2.8 and 4 µg g?1 obtained by using their corresponding non-imprinted polymers NIP1 and NIP2, respectively. Under optimized conditions, An–MINPs give high selectivity and sensitivity of anthracene separation. The anthracene uptake percentage from aqueous solutions ranged from 90.3 to 99.9%.  相似文献   

14.
The determination of target molecules in complicated matrices such as biological samples is largely dependent on sample pretreatment. Molecularly imprinted solid-phase extraction (SPE), using molecularly imprinted polymers as the adsorbent, has been demonstrated to be effective for the selective enrichment of target molecules in biological samples. In this study, molecularly imprinted polymeric microspheres were fabricated by two-step swelling polymerization using polystyrene particles as seeds, nicotinamide as the template, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linker. The molecularly imprinted polymeric microspheres were packed into empty SPE cartridges, and the spiked urine and serum samples were loaded separately. After an initial washing and elution step, the effluents were analyzed by high-performance liquid chromatography (HPLC) using 1:9 methanol/0.05% phosphoric acid. The obtained molecularly imprinted polymeric microspheres were uniform, and the spherical particles were well distributed. The established method was validated, and the results showed that the method was linear from 0.499 to 19.96?µg?mL?1. The limits of detection and quantification for nicotinamide were 0.3 and 0.9?µg?mL?1, respectively. The relative standard deviations were 1.55 and 2.86% in urine and serum, respectively. The spiked recoveries of nicotinamide were 86.0–98.8% and 87.0–96.8% in urine and serum, respectively. The molecularly imprinted SPE and HPLC methods in this study are useful for the pretreatment and determination of the target compounds in these matrices.  相似文献   

15.
Sun  Xue  Liu  Yiru  Niu  Na  Chen  Ligang 《Analytical and bioanalytical chemistry》2019,411(21):5519-5530
Analytical and Bioanalytical Chemistry - A novel fluorescent probe based on molecularly imprinted polymers (MIPs) coupled with carbon quantum dots (CQDs) was fabricated and successfully used for...  相似文献   

16.
In this study, novel monodisperse restricted access media‐molecularly imprinted polymers were successfully prepared by surface initiated reversible addition‐fragmentation chain transfer polymerization using monodisperse crosslinked poly (glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) microspheres as the carrier and acryloyl chloride‐modified β‐cyclodextrin as the hydrophilic functional monomer. The surface morphology, protein exclusion, and adsorption properties of the molecularly imprinted polymers were investigated. The results show that the material has excellent monodispersity and hydrophilicity, and simultaneously exhibit high adsorption capacity, fast binding kinetics, high selectivity, and significant thermal stability. The molecularly imprinted polymers as dispersive solid‐phase extraction adsorbent combined with reversed‐phase high‐performance liquid chromatography was used to selectively enrich, separate, and analyze trace 17β‐estradiol in milk samples. The recovery of 17β‐estradiol is 88–95% with relative standard deviation of <4%, and the limits of detection and quantification of this method are 2.08 and 9.29 µg/L, respectively. The novel restricted access media‐molecularly imprinted polymer adsorbents provide an effective method for the selective extraction and detection of 17β‐estradiol directly from complex samples.  相似文献   

17.
We describe a stoichiometric approach to the synthesis of molecularly imprinted polymers specific for auramine O. Using the stoichiometric interaction in molecular imprinting, no excess of binding sites is necessary and binding sites are only located inside the imprinted cavities. The free base of the template was obtained to facilitate the interaction with the monomers. Itaconic acid was selected as the functional monomer, and stoichiometric ratio of the interaction with the free base was investigated. The molecularly imprinted polymer preparation conditions such as cross‐linker, molar ratio, porogen were optimized as divinylbenzene, 1:2:20 and chloroform/N,N‐dimethylformamide, respectively. Under the optimum conditions, a good imprinting effect and very high selectivity were achieved. A solid‐phase extraction method was developed using the molecularly imprinted polymers as a sorbent and extraction procedure was optimized. The solid‐phase extraction method showed a high extraction recovery for auramine O in its hydrochloride form and free form compared to its analogues. The results strongly indicated that stoichiometric imprinting is an efficient method for development of high selectivity molecularly imprinted polymers for auramine O.  相似文献   

18.
The quantum chemical method was applied for screening functional monomers in the rational design of salbutamol‐imprinted polymers. Salbutamol was the template molecule, and methacrylic acid was the single functional monomer. The LC‐WPBE/6–31G(d,p) method was used to investigate the geometry optimization, active sites, natural bond orbital charges, binding energies of the imprinted molecule, and solvation energy. The mechanism of action between salbutamol and methacrylic acid was also discussed. The theoretical results show that salbutamol interacts with functional monomers by hydrogen bonds, and the salbutamol‐imprinted polymers with a ratio of 1:4 (salbutamol/methacrylic acid) in acetonitrile had the highest stability. The salbutamol‐imprinted polymers were prepared by precipitation polymerization. The experimental results indicated that the maximum adsorption capacity for salbutamol toward molecularly imprinted polymers was 7.33 mg/g, and the molecularly imprinted polymers had a higher selectivity for salbutamol than for norepinephrine and terbutaline sulfate. Herein, the studies can provide theoretical and experimental references for the salbutamol molecular imprinted system.  相似文献   

19.
In this work, a novel dual‐template magnetic molecularly imprinted polymer particle for dicofol and chlorpyrifos‐methyl was prepared through oil‐in‐water emulsifier‐free emulsion technology. The resulting magnetic particles were characterized with electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. It was found that as‐prepared particles were well‐shaped spheres with multi‐hollow structures and of a size around 125 μm. Meanwhile it showed a good magnetic sensitivity. The results testified that multi‐hollow magnetic molecularly imprinted polymers possessed excellent recognition capacity and fast kinetic binding behavior to the objective molecules. The maximum binding amounts toward dicofol and chlorpyrifos‐methyl were 31.46 and 25.23 mg/g, respectively. The feasibility of the use of the particles as a solid‐phase extraction sorbent was evaluated. Satisfactory recoveries ranging from 90.62 to 111.47 and 91.07 to 94.03% were obtained for dicofol and chlorpyrifos‐methyl, respectively, spiked at three concentration levels from real samples. The Langmuir isotherm equation provided an excellent fit to the equilibrium sorption data of either dicofol or chlorpyrifos‐methyl. It provided a novel way to advise dual‐template magnetic molecularly imprinted polymer particles to adsorb pesticides with high selectivity.  相似文献   

20.
A broad selective molecularly imprinted polymers-based solid phase extraction (MISPE) for levonorgestrel (LNG) from water samples was developed. Using LNG as a template molecule, acrylamide (AA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as linking agent and bulk polymerisation as a synthetic method, the molecularly imprinted polymers (MIPs) were synthesised and characterised. The MIPs displayed a high specific rebinding for LNG with the imprinting factor of 3.71. The Scatchard analysis showed that there was at least one class of binding site for LNG formed in the MIPs with the dissociation constant of 8.046?µg?mL?1. The results of selectivity testing indicated that the MIPs also exhibited high cross-reactivity with structurally related compounds (estrone, methylprednisolone and ethinyl estradiol), but no recognition with non-structurally related compound (indomethacin), suggesting that the MIPs could be used as a broad recognition absorbent. MISPE column was prepared by packing MIPs particles into a common SPE cartridge. The MISPE extraction conditions including loading, washing and eluting solutions were carefully optimised. Water samples spiked with LNG were extracted by MISPE column and detected by high-performance liquid chromatography. The recoveries were found to be 79.97?~?132.79% with relative standard deviations (RSD) of 1.92?~?10.43%, indicating the feasibility of the prepared MIPs for LNG extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号