首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we propose an inverse inexact iteration method for the computation of the eigenvalue with the smallest modulus and its associated eigenvector for a large sparse matrix. The linear systems of the traditional inverse iteration are solved with accuracy that depends on the eigenvalue with the second smallest modulus and iteration numbers. We prove that this approach preserves the linear convergence of inverse iteration. We also propose two practical formulas for the accuracy bound which are used in actual implementation. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
A smoothing inexact Newton method for nonlinear complementarity problems   总被引:1,自引:0,他引:1  
In this article, we propose a new smoothing inexact Newton algorithm for solving nonlinear complementarity problems (NCP) base on the smoothed Fischer-Burmeister function. In each iteration, the corresponding linear system is solved only approximately. The global convergence and local superlinear convergence are established without strict complementarity assumption at the NCP solution. Preliminary numerical results indicate that the method is effective for large-scale NCP.  相似文献   

3.
In this paper, we describe a variant of the Newton Interior-Point method in [8] for nonlinear programming problems. In this scheme, the perturbation parameter can be chosen within a range of, values and we can use an iterative method for approximately solving the reduced linear system arising at each step. We have devised the inner termination rule which guarantees the global convergence of this Newton Inexact Interior-Point method. We remark that the required assumptions are weaker than those stated in [8], as shown by some numerical examples. This research was supported by the Italian Ministry for Education, University and Research (MIUR), FIRB Project No. RBAU01JYPN.  相似文献   

4.
We present a new semi-local convergence theorem for the inexact Newton methods in the assumption that the derivative satisfies some kind of weak Lipschitz conditions. As special cases of our main result we re-obtain some well-known convergence theorems for Newton methods.  相似文献   

5.
In this paper, we are interested in the solution of nonlinear inverse problems of the form F(x)=y. We propose an implicit Landweber method, which is similar to the third-order midpoint Newton method in form, and consider the convergence behavior of the implicit Landweber method. Using the discrepancy principle as a stopping criterion, we obtain a regularization method for ill-posed problems. We conclude with numerical examples confirming the theoretical results, including comparisons with the classical Landweber iteration and presented modified Landweber methods.  相似文献   

6.
In this paper, inexact Gauss–Newton methods for nonlinear least squares problems are studied. Under the hypothesis that derivative satisfies some kinds of weak Lipschitz conditions, the local convergence properties of inexact Gauss–Newton and inexact Gauss–Newton like methods for nonlinear problems are established with the modified relative residual control. The obtained results can provide an estimate of convergence ball for inexact Gauss–Newton methods.  相似文献   

7.
Implicit iterative method acquires good effect in solving linear ill-posed problems. We have ever applied the idea of implicit iterative method to solve nonlinear ill-posed problems, under the restriction that α is appropriate large, we proved the monotonicity of iterative error and obtained the convergence and stability of iterative sequence, numerical results show that the implicit iterative method for nonlinear ill-posed problems is efficient. In this paper, we analyze the convergence and stability of the corresponding nonlinear implicit iterative method when αk are determined by Hanke criterion.  相似文献   

8.
The convergence of an approximation scheme known as policy iteration has been demonstrated for controlled diffusions by Fleming, Puterman, and Bismut. In this paper, we show that this approximation scheme is equivalent to the Newton-Kantorovich iteration for solving the optimality equation and exploit this equivalence to obtain a new proof of convergence. Estimates of the rate of convergence of this procedure are also obtained.This research was partially supported by NRC Grant No. A-3609.  相似文献   

9.
In this paper, we present an extension to the NE/SQP method; the latter is a robust algorithm that we proposed for solving the nonlinear complementarity problem in an earlier article. In this extended version of NE/SQP, instead of exactly solving the quadratic program subproblems, approximate solutions are generated via an inexact rule.Under a proper choice for this rule, this inexact method is shown to inherit the same convergence properties of the original NE/SQP method. In addition to developing the convergence theory for the inexact method, we also present numerical results of the algorithm tested on two problems of varying size.  相似文献   

10.
Inspired by the Logarithmic-Quadratic Proximal method [A. Auslender, M. Teboulle, S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Comput. Optim. Appl. 12 (1999) 31-40], we present a new prediction-correction method for solving the nonlinear complementarity problems. In our method, an intermediate point is produced by approximately solving a nonlinear equation system based on the Logarithmic-Quadratic Proximal method; and the new iterate is obtained by convex combination of the previous point and the one generated by the improved extragradient method at each iteration. The proposed method allows for constant relative errors and this yields a more practical Logarithmic-Quadratic Proximal type method. The global convergence is established under mild conditions. Preliminary numerical results indicate that the method is effective for large-scale nonlinear complementarity problems.  相似文献   

11.
Based on separable property of the linear and the nonlinear terms and on the Hermitian and skew-Hermitian splitting of the coefficient matrix, we present the Picard-HSS and the nonlinear HSS-like iteration methods for solving a class of large scale systems of weakly nonlinear equations. The advantage of these methods over the Newton and the Newton-HSS iteration methods is that they do not require explicit construction and accurate computation of the Jacobian matrix, and only need to solve linear sub-systems of constant coefficient matrices. Hence, computational workloads and computer memory may be saved in actual implementations. Under suitable conditions, we establish local convergence theorems for both Picard-HSS and nonlinear HSS-like iteration methods. Numerical implementations show that both Picard-HSS and nonlinear HSS-like iteration methods are feasible, effective, and robust nonlinear solvers for this class of large scale systems of weakly nonlinear equations.  相似文献   

12.
The inexact Rayleigh quotient iteration (RQI) is used for computing the smallest eigenpair of a large Hermitian matrix. Under certain condition, the method was proved to converge quadratically in literature. However, it is shown in this paper that under the original given condition the inexact RQI may not quadratically converge to the desired eigenpair and even may misconverge to some other undesired eigenpair. A new condition, called the uniform positiveness condition, is given that can fix misconvergence problem and ensure the quadratic convergence of the inexact RQI. An alternative to the inexact RQI is the Jacobi-Davidson (JD) method without subspace acceleration. A new proof of its linear convergence is presented and a sharper bound is established in the paper. All the results are verified and analyzed by numerical experiments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 10471074, 10771116) and the Doctoral Program of the Ministry of Education of China (Grant No. 20060003003)  相似文献   

13.
Newton iteration method can be used to find the minimal non‐negative solution of a certain class of non‐symmetric algebraic Riccati equations. However, a serious bottleneck exists in efficiency and storage for the implementation of the Newton iteration method, which comes from the use of some direct methods in exactly solving the involved Sylvester equations. In this paper, instead of direct methods, we apply a fast doubling iteration scheme to inexactly solve the Sylvester equations. Hence, a class of inexact Newton iteration methods that uses the Newton iteration method as the outer iteration and the doubling iteration scheme as the inner iteration is obtained. The corresponding procedure is precisely described and two practical methods of monotone convergence are algorithmically presented. In addition, the convergence property of these new methods is studied and numerical results are given to show their feasibility and effectiveness for solving the non‐symmetric algebraic Riccati equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A new algorithm for the solation of large-scale nonlinear complementarity problems is introduced. The algorithm is based on a nonsmooth equation reformulation of the complementarity problem and on an inexact Levenberg-Marquardt-type algorithm for its solution. Under mild assumptions, and requiring only the approximate solution of a linear system at each iteration, the algorithm is shown to be both globally and superlinearly convergent, even on degenerate problems. Numerical results for problems with up to 10 000 variables are presented. Partially supported by Agenzia Spaziale Italiana, Roma, Italy.  相似文献   

15.
In this paper, we consider the inverse scattering problem of determining the shape of a cavity with a penetrable inhomogeneous medium of compact support from one source and a knowledge of measurements placed on a curve inside the cavity. First, the boundary value problem of the partial differential equations can be transformed into an equivalent system of nonlinear and ill-posed integral equations for the unknown boundary. Then, we apply the regularized Newton iterative method to reconstruct the boundary and prove the injectivity for the linearized system. Finally, we present some numerical examples to show the feasibility of our method.  相似文献   

16.
This work presents a radial basis collocation method combined with the quasi‐Newton iteration method for solving semilinear elliptic partial differential equations. The main result in this study is that there exists an exponential convergence rate in the radial basis collocation discretization and a superlinear convergence rate in the quasi‐Newton iteration of the nonlinear partial differential equations. In this work, the numerical error associated with the employed quadrature rule is considered. It is shown that the errors in Sobolev norms for linear elliptic partial differential equations using radial basis collocation method are bounded by the truncation error of the RBF. The combined errors due to radial basis approximation, quadrature rules, and quasi‐Newton and Newton iterations are also presented. This result can be extended to finite element or finite difference method combined with any iteration methods discussed in this work. The numerical example demonstrates a good agreement between numerical results and analytical predictions. The numerical results also show that although the convergence rate of order 1.62 of the quasi‐Newton iteration scheme is slightly slower than rate of order 2 in the Newton iteration scheme, the former is more stable and less sensitive to the initial guess. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

17.
Troesch’s problem is an inherently unstable two-point boundary value problem. A new and efficient algorithm based on the variational iteration method and variable transformation is proposed to solve Troesch’s problem. The underlying idea of the method is to convert the hyperbolic-type nonlinearity in the problem into polynomial-type nonlinearities by variable transformation, and the variational iteration method is then directly used to solve this transformed problem. Only the second-order iterative solution is required to provide a highly accurate analytical solution as compared with those obtained by other analytical and numerical methods.  相似文献   

18.
A new eighth-order iterative method for solving nonlinear equations   总被引:1,自引:0,他引:1  
In this paper we present an improvement of the fourth-order Newton-type method for solving a nonlinear equation. The new Newton-type method is shown to converge of the order eight. Per iteration the new method requires three evaluations of the function and one evaluation of its first derivative and therefore the new method has the efficiency index of , which is better than the well known Newton-type methods of lower order. We shall examine the effectiveness of the new eighth-order Newton-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons are made with several other existing methods to show the performance of the presented method.  相似文献   

19.
20.
In this paper,we introduce a modified Landweber iteration to solve the sideways parabolic equation,which is an inverse heat conduction problem(IHCP) in the quarter plane and is severely ill-posed.We shall show that our method is of optimal order under both a priori and a posteriori stopping rule.Furthermore,if we use the discrepancy principle we can avoid the selection of the a priori bound.Numerical examples show that the computation effect is satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号