首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In the present study, room-temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate was used as extraction solvent in a liquid–liquid microextraction (LLME) procedure followed by liquid chromatography for determining 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP) in environmental water samples. RTIL-based LLME was a simple, inexpensive, and fast sample preparation method, and its parameters such as extraction time, addition of salt, selection of phase ratio, and pH value were optimized. The optimized method had acceptable limits of detection (LOD) and a precision of 2?µg?L?1 and 8.1% for 4-NP and 0.6?µg?L?1 and 3.7% for 4-t-OP, respectively. The proposed method was successfully applied in river water and effluent from a sewage-treatment plant, and the recoveries spiked at 6?µg?L?1 and 25?µg?L?1 levels were in the range of 82–113%.  相似文献   

2.
Summary Analysis of extracts from fish liver containing alkylphenol contaminants can be hindered by the presence of co-extracted fats and proteins that interfere with chromatographic analysis. In this study accelerated solvent extraction (ASE), Florisil clean-up, then combined liquid chromatography—mass spectrometry (LC-MS) with an electrospray (ESI) interface have been used to optimize an analytical procedure for the analysis of octylphenol, nonylphenol, and bisphenol A in fish liver. After comparison of the efficiency of ASE with conventional Soxhlet extraction the developed procedure was applied to the analysis of liver samples. Calibration plots of the relationship between concentration and the ratio of the responses to the analyte and to the internal standard, 4-n-nonylphenol, were determined by linear regression analysis over the concentration range 0.05 to 10 ppm and resulted in good fits (r 2>0.994). Recoveries (evaluated for each liver sample as the ratio between response to the surrogate compound, 4-n-nonylphenol, and that to the internal standard, 4-n-heptylphenol, relative to the same ratio for a reference standard solution) were 53±20%. Under the experimental conditions used in this work the limits of detection (LOD), calculated by use of a signal-to-noise ratio of 3∶1, were 5 ng g−1 for 4-t-octylphenol, 15 ng g−1 for bisphenol A, and 20 ng g−1 for nonylphenol. The method can be satisfactorily applied to screening analysis of octyl-and nonylphenols and bisphenol A in biological samples such as fish liver.  相似文献   

3.
The present work describes the development and validation of an analytical method based on liquid chromatography (LC), coupled with tandem mass spectrometry (MS/MS) that allows the determination and confirmation of several endocrine-disrupting chemicals (EDCs) in honey. The EDCs studied were nine phenols of different nature: chlorophenols (2,4-dichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol), alkylphenols (4-tert-butylphenol, 4-tert-octylphenol, and 4-n-octylphenol) bisphenols (bisphenol-A and bisphenol-F), and 4-tert-butylbenzoic acid. The method incorporates a restricted-access material (RAM), coupled on-line to the LC-MS/MS system, which allows direct injection of the matrix into the RAM-LC-MS/MS system. The optimized method developed, RAM-LC-MS/MS, was applied to fortified honey samples, affording detection limits in the 0.6–7.2 ng g−1 range, calculated for a signal-to-noise ratio of 3. In addition, the method was validated as a quantitative confirmatory method according to European Union Decision 2002/657/EC. The validation criteria evaluated were linearity, repeatability, reproducibility, recovery, decision limits, detection capabilities, specificity, and ruggedness. Repeatability and within-laboratory reproducibility were evaluated at two concentration levels, being ±11% or below at 20 ng g−1. The decision limits (CCα) and detection capabilities (CCβ) were in the 1.7–12.6 and 2.8–21.6 ng g−1 range, respectively.  相似文献   

4.
A less time-, solvent- and sorbent-consuming analytical methodology for the determination of bisphenol A and alkylphenols (4-tert-octylphenol, 4-octylphenol, 4-n-nonylphenol, nonylphenol) in marine sediment was developed and validated. The method was based on selective pressurized liquid extraction (SPLE) with a simultaneous in cell clean up combined with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). The SPLE extraction conditions were optimized by a Plackett–Burman design followed by a central composite design. Quantitation was performed by standard addition curves in order to correct matrix effects. The analytical features of the method were satisfactory: relative recoveries varied between 94 and 100% and repeatability and intermediate precision were <6% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.17 (4-n-nonylphenol) and 4.01 ng g−1 dry weight (nonylphenol). Sensitivity, selectivity, automaticity and fastness are the main advantages of this green methodology. As an application, marine sediment samples from Galicia coast (NW of Spain) were analysed. Nonylphenol and 4-tert-octylphenol were measured in all samples at concentrations between 20.1 and 1409 ng g−1 dry weight, respectively. Sediment toxicity was estimated and no risk to aquatic biota was found.  相似文献   

5.
An efficient derivatization method using phenyltrimethylammonium (PTA-OH) has been developed to determine simultaneously four phenolic endocrine disrupting chemicals, 4-n-nonylphenol (4-n-NP), 4-tert-octylphenol (4-t-OP), bisphenol A (BPA) and 4-cumylphenol (4-CP) in surface water of Dianchi Lake (China) by solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS). Compared with silylation of target phenols using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)?+?1% trimethylchlorosilane (TMCS), methylation by PTA-OH displayed a higher response and stability based on the investigations of various derivatization conditions, including derivatization solvent, amount of derivatization reagent, reaction temperature and time. Experiments were carried out to examine the performance of the proposed method based on the correlation coefficient, the method quantification limit (MQL), mean recovery rate and relative standard deviation (RSD). Under optimum derivatization conditions, MQLs of the methylated target compounds were all below 1?ng?L?1. Results revealed that the proposed method exhibited a satisfactory precision and reproducibility for the separation and determination of target phenols. The proposed method had been applied to determine four phenols in surface water of Dianchi Lake located in southwest of China. The concentrations of 4-n-NP, 4-t-OP, BPA and 4-CP were determined to be 13.6-141.6?ng?L?1, N.D.-56.5?ng?L?1, N.D.- 4713.6?ng?L?1 and 23.3-48.5?ng?L?1, respectively.  相似文献   

6.
A new analytical method for the simultaneous determination of trace levels of seven prohibited N‐nitrosamines (N‐nitrosodimethylamine, N‐nitrosoethylmethylamine, N‐nitrosopyrrolidine, N‐nitrosodiethylamine, N‐nitrosopiperidine, N‐nitrosomorpholine, and N‐nitrosodiethanolamine) in cosmetic products has been developed. The method is based on vortex‐assisted reversed‐phase dispersive liquid–liquid microextraction, which allows the extraction of highly polar compounds, followed by liquid chromatography with mass spectrometry. The variables involved in the extraction process were studied to obtain the highest enrichment factor. Under the selected conditions, 75 μL of water as extraction solvent was added to 5 mL of n‐hexane sample solution and assisted by vortex mixing during 30 s to form the cloudy solution. The method was successfully validated showing good linearity (0.5–50 ng/mL), enrichment factors up to 65 depending on the target compound, limits of detection values of 1.8–50 ng/g, and good repeatability (RSD < 9.8%). Finally, the proposed method was applied to different cosmetic samples. Quantitative relative recovery values (80–113%) were obtained, thus showing that matrix effects were negligible. The achieved analytical features of the proposed method, besides of its simplicity and affordability, make it useful to perform the quality control of cosmetic products to ensure the safety of consumers.  相似文献   

7.
Tan BL  Ali Mohd M 《Talanta》2003,61(3):385-391
A total of seven pesticides and eight alkylphenols were monitored using this method for the determination of their trace levels in human cord blood. The pesticides are lindane, diazinon, α-endosulfan, β-endosulfan, endosulfan sulfate, chlorpyrifos and endrin; while the alkylphenols are 4-n-butylphenol, 4-n-pentylphenol, 4-n-hexylphenol, 4-t-octylphenol, 4-n-heptylphenol, nonylphenol, 4-n-octylphenol and bisphenol A. The pesticides and alkylphenols in the cord blood samples were extracted with solid phase extraction IST C18 cartridges and analyzed by selected ion monitoring mode using quadrapole detector in Shimadzu QP-5000 gas chromatograph-mass spectrometer. Trace levels of pesticide and alkylphenols in the range of non-detectable to 15.17 ng ml−1, were detected in the human cord blood samples. This technique of monitoring the levels of endocrine-disruptors in blood samples is consistent, reliable and cost effective while reducing wastage of time and solvents.  相似文献   

8.
An improved method was developed for the simultaneous determination of eight steroid and phenolic endocrine disrupting chemicals, such as oestrone (E1), 17β-oestradiol (E2), oestriol (E3), 17α-ethynylestradoil (EE2), 4-nonylphenol (4-NP), bisphenol A (BPA), 4-tert-octylphenol (4-t-OP) and 4-cumylphenol (4-CP), in biological samples. The optimal extraction and clean-up procedures were investigated using microwave-assisted extraction (MAE), automated gel permeation chromatography (GPC) and solid phase extraction (SPE). As a consequence, the most efficient extraction was achieved by using MAE with methanol as solvent at an extraction temperature of 110°C for 20?min. The clean-up of extracts was carried out by GPC on a Biobeads S-X3 column with cyclohexane/ethyl acetate (1:1, v/v) as mobile phase. Target compounds were eluted in the fraction from 7–14?min retention time. Moreover, the cleanest extracts were obtained by solid phase extraction with C-18 cartridges after the elution with 15?mL ethyl acetate. The final sample extracts were derivatised using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) (1% trimethylchlorosilane, TMCS) as derivatisation reagent with pyridine as the solvent. Quantification was performed by gas chromatography-mass spectrometry (GC-MS) with electron ionisation (EI) and selected ion monitoring (SIM) mode. The method was validated by spiked samples which showed good recovery and reproducibility. The overall recoveries ranged between 55.1% and 100.6%, with relative standard deviations (RSD) of 2.3–12.7% for the entire procedure. Method detection limits (MDL) ranged from 0.3 to 0.7?ng?g?1 dry weight (dw). Performance of the method was demonstrated by its application on tissues from fish exposed to high concentration of EDCs in the laboratory. The developed method is a promising approach for the analysis of steroid and phenolic endocrine disrupting chemicals in various biological samples.  相似文献   

9.
A simple and sensitive analytical method for the determination of fluoxetine, estrone and selected pesticides and endocrine disruptors has been proposed for wastewater analysis by gas chromatography–mass spectrometry (GC–MS). A switchable solvent was produced with N,N-dimethylbenzylamine by changing its hydrophobic properties by the addition of CO2 for protonation. Sodium hydroxide was added to switch the solubility of the extraction solvent and to allow phase separation in the sample/standard medium. Analytical parameters affecting the extraction outputs such as volume of switchable solvent, concentration and volume of sodium hydroxide, mixing type and period were investigated to improve the extraction recovery of the selected analytes. Under the optimum conditions, limits of detection and limits of quantification for the analytes were calculated in the ranges of 0.16–8.6?ng mL?1 and 0.54–29?ng mL?1, respectively. The developed method was successfully applied to synthetic wastewater and two municipal wastewater samples. None of the selected analytes were detected in the samples. High recovery values demonstrated that the proposed method was reliable and applicable to complex matrices.  相似文献   

10.
Zhou Q  Gao Y  Xie G 《Talanta》2011,85(3):1598-1602
Present study described a simple, sensitive, and viable method for the determination of bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol in water samples using temperature-controlled ionic liquid dispersive liquid-phase microextraction coupled to high performance liquid chromatography-fluorescence detector. In this experiment, 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) was used as the extraction solvent, and bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol were selected as the model analytes. Parameters affecting the extraction efficiency such as the volume of [C8MIM][PF6], dissolving temperature, extraction time, sample pH, centrifuging time and salting-out effect have been investigated in detail. Under the optimized conditions, good linear relationship was found in the concentration range of 1.0-100 μg L−1 for BPA, 1.5-150 μg L−1 for 4-NP, and 3-300 μg L−1 for 4-OP, respectively. Limits of detection (LOD, S/N = 3) were in the range of 0.23-0.48 μg L−1. Intra day and inter day precisions (RSDs, n = 6) were in the range of 4.6-5.5% and 8.5-13.3%, respectively. This method has been also successfully applied to analyze the real water samples at two different spiked concentrations and excellent results were obtained.  相似文献   

11.
In the present work the determination of benzene, toluene, ethylbenzene and o-xylene (BTEX) in environmental sample solutions using gas chromatography with flame ionisation detection (GC-FID) combined with three different sampling techniques, such as; direct single drop microextraction (DI-SDME), headspace single drop microextraction (HS-SDME) and ultrasonic assisted HS-SDME, were compared. In all of these techniques, for the determination of BTEX, the experimental parameters such as organic solvent effect, extraction time, agitation speed and salting effect were optimised. At their optimised conditions of operation the detection limits, times of extraction and precision for the three techniques are established. A detailed comparison of the analytical performance characteristics of these techniques for final GC-FID determination of BTEX in water samples was given. The technique provided a linear range of 50–20000?ng?mL–1 for DI-SDME and 10–20000?ng?mL–1 for HS-SDME methods, good repeatability (RSDs <4.72–7.74% for DI-SDME and 1.80–7.05% for HS-SDME (n?=?5), good linearity (r?≥?0.9978) and limits of detection (LODs) in the range of 0.006–10?ng?mL?1 for DI-SDME, 0.1–3?ng?mL–1 for HS-SDME methods (S/N?=?3). Then the optimised techniques were also applied to real samples (river and waste waters) containing BTEX and similar precision (RSD?<?8.2,?n?=?3) was obtained.  相似文献   

12.
Here is reported a novel analytical approach for the extractive separation and determination of enantiomeric ratios of aristocularine in bovine serum albumin. The results demonstrate suitable analytical performances. The separation was performed by chiral high-performance liquid chromatography with a 5-µm column using a mobile phase of 1:1 n-hexane:ethanol at a flow rate of 0.7?mL?min?1 with ultraviolet–visible absorption, circular dichroism, and polarimetric detection. The enantiomers were eluted at 13.2 and 15.6?min for (+) and (?)-aristocularine, with a resolution of 1.58 and a separation factor of 1.27. The analytical parameters for the dispersive liquid–liquid microextraction were optimized; under these conditions, the extraction recoveries were from 88.6% to 93.9% for a two-step extraction. The precision, reported as the percent relative standard deviation, had values from 2.9% to 3.2% for 0.5?µg?mL?1 of analyte for five replicate measurements using ultraviolet–visible absorption and circular dichroism detection. The limits of detection were between 0.05 and 0.08?µg?mL?1 with enrichment ratios up to a value of 12.  相似文献   

13.
The analysis of organic pollutants in environmental water samples requires a pre-concentration step. Pre-concentration techniques such as stir bar sorptive extraction (SBSE) have gained popularity since they minimise the use of toxic organic solvents and can be considered as green analytical techniques. Similar to other pre-concentration techniques, one of the problems when SBSE is used is the matrix effect, which often occurs during the analysis of environmental water samples such as estuarine or wastewater samples. The present work studied the matrix effect during SBSE coupled to in-tube derivatisation–thermal desorption (TD)–gas chromatography–mass spectrometry for the determination of several endocrine disruptor compounds, such as alkylphenols, bisphenol A, estrogens and sterols, in environmental water samples, after optimisation of the major variables affecting the determination. Variables such as the addition of methanol or an inert salt to the donor phase, the extraction temperature, the volume of the donor phase, the stirring rate and the extraction time were studied during the SBSE optimisation. In the case of the in-tube derivatisation and TD step, the volume of the derivatisation reagent (N,O-bis(trimethylsilyl)triufloroacetamide with 1% of trimethylchlorosilane (BSTFA + 1% TMCS)) and the cryo-focusing temperature were fixed (2 μL and −50 °C, respectively) according to a consensus between maximum signal and optimal operation conditions. Good apparent recovery values (78–124%) were obtained for most of the analytes in Milli-Q water, except for 4-tert-octylphenol (4-tOP), which showed apparent recovery values exceeding 100%. Precision (n = 4) was in the 2–27%, and method detection limits were in the low nanogrammes per litre level for most of the analytes studied. The matrix effect was studied using two different approaches. On the one hand, Milli-Q water samples were spiked with humic acids, and apparent recovery values were studied with and without correction with the corresponding deuterated analogue. On the other hand, estuarine water and wastewater samples were spiked with known concentrations of target analytes, and apparent recoveries were studied as explained above. In general, the matrix effect could be corrected with the use of deuterated analogues, except for 4-tOP and nonylphenols for which [2H4]-n-nonylphenol did not provide good corrections.  相似文献   

14.
This work introduces the development of a novel determination method of trace nickel (ng l–1 level) in natural water samples. Nickel in the water samples is liquid–liquid extracted into methyl isobutyl ketone (MIBK) as nickel-diethyldithiocarbamate (DDTC) complex, and isotope dilution-oxygen added nitrogen-microwave induced plasma mass spectrometry (ID-oxygen added nitrogen-MIP-MS) is conducted by direct measurement of the liquid–liquid extracted organic MIBK phase. The accuracy of the proposed method was confirmed by analysing certified reference materials (NRC NASS-5 seawater, NRC SLRS-3 riverine water and NRC SLRS-4 river water), and the analytical results obtained were in good agreement with the certified values. The detection limit for nickel is 1.3?ng?l?1 when the water sample is 50 times concentrated. The precision as RSD is <4%. The proposed method was applied to clarify the concentration-depth vertical profiles of nickel in Lake Mashu, Japan, as the Baseline Station of the United Nations GEMS/Water (Global Environment Monitoring System/Water) Programme.  相似文献   

15.

A new technique, namely dynamic headspace liquid-phase microextraction, has been developed for the extraction of 1,4-dioxane in cosmetic and hygiene samples followed by gas chromatography–flame ionization detection. In this method, the sample is mixed with acetone as a diluent solvent. Then, a few microliters of n-octanol are added into a home-made extraction vessel placed in the headspace of the sample. By heating, the target analyte is transferred to the headspace of the sample and then extracted into n-octanol. Under the optimized conditions, the method showed a good linearity in the range of 3.24–1000 μg kg−1 with a coefficient of determination 0.998. Figures of merit such as enrichment factor of 375, extraction recovery of 94 %, limits of detection and quantification 0.97 and 3.24 μg kg−1, respectively, and relative standard deviation 4.7 % (n = 6, C = 30 μg kg−1) of the proposed method were satisfactory for determination of the target analyte. Finally, the method was successfully applied in determination of 1,4-dioxane in various cosmetic and hygiene samples including shampoo, toothpaste, lotion, washing liquid, and dishwashing liquid.

  相似文献   

16.
A simple and highly sensitive method called thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of 4-nonylphenol (NP) and 4-tert.-octylphenol (OP) in water samples, is described. NP and OP in samples are extracted from water samples and concentrated by the stir bar sorptive extraction (SBSE) technique. A stir bar coated with polydimethylsiloxane (PDMS) is added to a 2.0 ml water sample and stirring is carried out for 60 min at room temperature (25 °C) in a headspace vial. Then the extract is high sensitively analyzed by TD-GC-MS without any derivatization step. The optimum SBSE conditions are realized at an extraction time of 60 min. The detection limits are 0.02 ng ml−1 for NP and 0.002 ng ml−1 for OP. The method shows good linearity over the concentration range of 0.1-10 ng ml−1 for NP and 0.01-10 ng ml−1 for OP, and the correlation coefficients are higher than 0.999. The average recoveries of NP and OP are higher than 97% (R.S.D.: 3.6-6.2%) with correction using the added surrogate standards, 4-(1-methyl) octylphenol-d5 and deuterium 4-tert.-octylphenol. This simple, accurate, sensitive and selective analytical method may be used in the determination of trace amounts of NP and OP in tap and river water samples.  相似文献   

17.
An environmentally-friendly analytical method for the simultaneous determination of 15 fat-soluble ultraviolet (UV) filters currently authorized by the European Union regulation on cosmetic products has been developed. The determination was performed by liquid chromatography with UV spectrophotometric detection. Different parameters, such as type of column, oven temperature, mobile phase composition and flow rate were studied. The best chromatographic separation was obtained under the following conditions: C18 column set at 60 °C and gradient ethanol:water (containing 1% formic acid and 20 mM of 2-hydroxypropyl-β-cyclodextrin) as mobile phase pumped at 1 mL min−1. 2-Hydroxypropyl-β-cyclodextrin was added as mobile phase modifier to achieve the complete resolution of some of the chromatographic peaks. The 15 target compounds were separated in less than 30 min. The method was satisfactorily validated by analyzing three laboratory-made cosmetic samples besides of eleven commercially available cosmetic products containing different combination of the target UV filters. Good accordance of the found levels compared with those of the laboratory-made samples and those of the commercial samples (when available) was achieved. Moreover, excellent recoveries (97–104%) and good intra-day and inter-day precision values at different concentration levels, besides limits of detection values below the μg mL−1 level, were obtained. These good analytical features, as well as their environmentally-friendly characteristics, make the presented method suitable not only for routine analysis in cosmetics industries, but also as candidate reference method for sunscreen analysis.  相似文献   

18.
This work reports the highly‐sensitive amperometric determination of free glycerol in biodiesel at a gold electrode adapted in a flow‐injection analysis (FIA) cell. The amperometric method involved the continuous application of three sequential pulses to the working electrode (+250 mV, +700 mV, and ?200 mV, for 100 ms each). This sequence of potential pulses eliminated electrode passivation and dramatically increased the analytical signal. The proposed FIA‐amperometric method presented low relative standard deviation between injections (1.5 %, n=15), high analytical frequency (85 h?1), satisfactory recovery values (93–118 %) for spiked samples, wide linear range (from 1 to 300 µmol L?1), and low detection limit (0.5 µmol L?1).  相似文献   

19.
A method for determining a group of endocrine-disrupting compounds in water samples was developed. This method was based on high-performance liquid chromatography-(electrospray) mass spectrometry (HPLC-(ESI)MS), working in negative ionization (NI) mode. Solid-phase extraction (SPE) with 200 mg Lichrolut EN was used to preconcentrate the water samples. The performance of the method was tested with several environmental water samples such as river, marine and influent and effluent water from a sewage treatment plant (STP). The limits of detection (LODs) of the method were between 0.001 and 0.3 g L–1 under selective-ion monitoring (SIM) acquisition mode for 500 mL of river, marine and STP effluent water samples and between 0.01 and 3 g L–1 for 100 mL of STP influent water. We determined some endocrine disruptors, such as diuron, bisphenol A (BPA), estrone, 4-tert-butylphenol (4-t-BP), 4-tert-octylphenol (4-t-OP) and pentachlorophenol (PCP), in several water samples at levels of g L–1.  相似文献   

20.
A sensitive and simple method of ion-exchange resin separation and graphite-furnace atomic absorption spectrometry (GFAAS) detection was proposed for the determination of inorganic vanadium species. Methylene Blue (MB) was used as a chelating agent of V(V) for ion-exchange separation. The complex of V(V) and MB could be trapped by ion-exchange resin at pH 3.0 and eluted by 1.0?mol?L?1 NaOH. The vanadium species was determined subsequently by GFAAS. The concentration of V(IV) was calculated by subtracting the V(V) concentration from the total concentration of vanadium. Under the optimized experimental conditions, the detection limit of V(V) is 0.48?µg?L?1 with RSD of 2.6% (n?=?5, c?=?2.0?µg?L?1). In order to verify the accuracy of the method, a certified reference soil sample was analyzed, and the results obtained were in good agreement with the certified values. The range of recovery for V(IV) and V(V) was 97.8–99.3% and 101.7–103.6%, respectively. The proposed method was applied to the speciation analysis of vanadium in lake-water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号