首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
2.
3.
4.
How well can we manipulate the state of a particle via a discrete-time quantum walk? We show that the discrete-time quantum walk on a one-dimensional infinite chain with coin operators that are independent of the position can only realize product operators of the form eiξA?1p, which cannot change the position state of the walker. We present a scheme to construct all possible realizations of all the product operators of the form eiξA?1p. When the coin operators are dependent on the position, we show that the translation operators on the position can not be realized via a DTQW with coin operators that are either the identity operator 1 or the Pauli operator σx.  相似文献   

5.
6.
《Comptes Rendus Physique》2016,17(7):789-801
It is generally assumed that a condensate of paired fermions at equilibrium is characterized by a macroscopic wavefunction with a well-defined, immutable phase. In reality, all systems have a finite size and are prepared at non-zero temperature; the condensate has then a finite coherence time, even when the system is isolated in its evolution and the particle number N is fixed. The loss of phase memory is due to interactions of the condensate with the excited modes that constitute a dephasing environment. This fundamental effect, crucial for applications using the condensate of pairs' macroscopic coherence, was scarcely studied. We link the coherence time to the condensate phase dynamics, and we show with a microscopic theory that the time derivative of the condensate phase operator θˆ0 is proportional to a chemical potential operator that we construct including both the pair-breaking and pair-motion excitation branches. In a single realization of energy E, θˆ0 evolves at long times as 2μmc(E)t/ħ, where μmc(E) is the microcanonical chemical potential; energy fluctuations from one realization to the other then lead to a ballistic spreading of the phase and to a Gaussian decay of the temporal coherence function with a characteristic time N1/2. In the absence of energy fluctuations, the coherence time scales as N due to the diffusive motion of θˆ0. We propose a method to measure the coherence time with ultracold atoms, which we predict to be tens of milliseconds for the canonical ensemble unitary Fermi gas.  相似文献   

7.
8.
9.
10.
11.
12.
13.
We study the 10 noncommutative spheres obtained by liberating, twisting, and liberating +twisting the real and complex spheres SRN1,SCN1. At the axiomatic level, we show that, under very strong axioms, these 10 spheres are the only ones. Our main results concern the computation of the quantum isometry groups of these 10 spheres, taken in an affine real/complex sense. We formulate as well a proposal for an extended formalism, comprising 18 spheres.  相似文献   

14.
15.
16.
17.
Landauer–Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C and an effective capacitance Cd of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties.  相似文献   

18.
19.
20.
The structure of the joint phase diagram demonstrating high-Tc superconductivity of copper oxides is studied on the basis of the theory of interaction-induced flat bands. Prerequisites for an associated topological rearrangement of the Landau state are established, and related non-Fermi-liquid (NFL) behavior of the normal states of cuprates is investigated. We focus on manifestations of this behavior in the electrical resistivity ρ(T), especially the observed gradual crossover from normal-state T-linear behavior ρ(T,x)=A1(x)T at doping x below the critical value xch of hole doping for termination of superconductivity, to T-quadratic behavior at x>xch, which is incompatible with predictions of the conventional quantum-critical-point scenario. It is demonstrated that the slope of the coefficient A1 is universal, being the same on both boundaries of the joint phase diagram of cuprates, in agreement with available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号