首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superconducting pairing of holes with a large (on the order of doubled Fermi) total pair momentum and small relative motion momenta is considered taking into account the quasi-two-dimensional electronic structure of high-T c cuprates with clearly defined nesting of the Fermi contour situated in an extended neighborhood of the saddle point of the electronic dispersion law (the momentum space region with a hyperbolic metric) and the arising of a spatially inhomogeneous (stripe) structure as a result of the redistribution of current carriers (holes) that restores regions with antiferromagnetic ordering. The superconducting energy gap and condensation energy were determined, and their dependences on the doping level were qualitatively studied. The energy gap was shown to exist in some hole concentration region limited on both sides. The superconducting state with a positive condensation energy appears in a narrower range of doping within this region. The reason for the arising of the superconducting state at a repulsive screened Coulomb interaction between holes is largely the redistribution of hole pairs in the momentum space related to the special features of the hyperbolic metric, which is responsible for the formation of the “pair” Fermi contour, and the renormalization of the kinetic energy of holes when the chemical potential changes because of the condensation of pairs. Hole pairs of the type under consideration exist not only in the condensate but also in the form of quasi-stationary states with very weak decay at temperatures substantially exceeding the superconducting transition temperature. The pseudogap region of the phase diagram of high-T c cuprates is related to such states. The pairing mechanism under consideration allows not only the principal characteristics of the phase diagram but also key experimental data on high-T c cuprate materials to be qualitatively explained.  相似文献   

2.
Thermally excited states of the three-dimensional electron gas in a neutralizing background are computed by path integral Monte Carlo simulation for values of the Wigner-Seitz radius within the interval 5 < r s < 15. Coulomb and exchange interactions, permutation symmetry, and spin state are treated explicitly. Variation of electron correlation functions with density and temperature is analyzed. Quantum effects suppress and enhance spatial correlation at low and high densities, respectively. Transition between the electron-gas states characterized by these opposite trends corresponds to a density of approximately 2.5 × 1021 cm?3. A transition line between liquid-like and gaslike phases is determined in the temperature-density diagram. Weak anisotropy of many-body correlations in the liquid-like state stimulates excitation of spherically symmetric collective rotational modes. The effective short-range pseudopotential exhibits strong temperature dependence due to exchange effects. For strongly correlated systems, the characteristic screening length deviates from that predicted by the Thomas-Fermi screening model ( $ \sim \sqrt {r_s } $ ), approaching a linear function of r s. The effective short-range interaction substantially differs from the Yukawa potential in mean field theory. Coulomb interaction shifts the Fermi level up by an order of magnitude or higher, and this effect becomes stronger with decreasing density.  相似文献   

3.
The Cu-O plane and the clusters that possess the same C4v symmetry around a Cu ion have 2-hole eigenstates of the kinetic energy with vanishing on-site repulsion (W=0 pairs). Cluster calculations by exact diagonalisation show that these are the quasiparticles that lead to a paired ground state, and have superconducting flux-quantisation properties. Here, we extend the theory to the full plane, and show that the W=0 quasiparticles are again the natural explanation of superconducting flux-quantisation. Moreover, by a new approach which is exact in principle, we calculate the effective interaction between two holes added to the ground state of the repulsive three-band Hubbard model. To explain how a noninteracting electron gas becomes a superconductor when switching the local Coulomb interaction, we obtain a closed-form analytic expression including the effects of all virtual transitions to 4-body intermediate states (exchange of an electron-hole pair). Our scheme is ready to include other interactions which are not considered in the Hubbard model but may be important. In the plane, the W=0 pairs have 1 B 2 and 1 A 2 symmetry. The effective interaction in these channels is attractive and leads to a Cooper-like instability of the Fermi liquid, while it is repulsive for triplet pairs. From , we derive an integral equation for the pair eigenfunction; the binding energy of the pairs is in the range of tens of meV. However, our symmetry-based method is far more general than the model. Received 18 December 1998  相似文献   

4.
Spectral and thermodynamic properties of electrons (holes) in covalent semiconducting glasses are considered in which self-trapping of electron (hole) pairs is realized with negative effective correlation energy U?. Unlike the Anderson model, electron (hole) pairing is restricted to a small part of the glass bonds. Ranges of the U? values are found in which either pair effects (suppression of paramagnetism etc.) or single-particle effects predominate; the concentration of the pair states and of the occupied ones can roughly be estimated and can be fairly high. The problem of the coexistence of the Fermi level pinning and effective diamagnetism in glasses is discussed. Some related effects are briefly considered.  相似文献   

5.
Based on density functional calculations within both standard generalized gradient approximation and plus on-site Coulomb interactions approaches, we have investigated the electronic structure and magnetic properties of the first-row element-doped CuCl semiconductors. The electronic correlations in both 2p and 3d orbitals are enhanced by adding the on-site Coulomb repulsion (Hubbard U and Hund exchange J). After a comparative study, we find that, for both standard and beyond approaches, B-doped CuCl is a half-metallic magnet with majority-spin impurity bands touching the Fermi level, C-doped CuCl is a magnetic semiconductor, and N-doped CuCl is a half-metallic magnet with minority-spin impurity bands crossing the Fermi level. Nevertheless, for O-doped CuCl, it transforms from a nonmagnetic semiconductor to a half-metallic magnet with metallic up-spins by considering the correlation effects. The calculation shows that the enhanced electronic correlation not only corrects the error of band-gap, but also influences the magnetic ground state and the distribution of local magnetic moments. The location of impurity bands with different dopants was understood based on the elements' electronegativity and interaction between dopant and host atoms. Strong hybridization between the dopant's 2p states and the filled 3d orbitals of adjacent Cu yields the main contribution to magnetization.  相似文献   

6.
The wave-function envelope method is used to describe the electronic states of the cuprate high-T c superconductors (HTSCs). In this method the 2D electronic states of the CuO2 layers of a unit cell play the role of quantum wells, while the 2D states of the reservoir play the role of quantum barriers. Because of the different anisotropy of the 2D effective masses of the wells and barriers, some states on the Fermi surface (line) belong to CuO2 layers and some states belong to the reservoir layers. This behavior of the electronic states explains characteristic features of HTSCs, such as the existence of regions on the Fermi surface with strongly different relaxation times, the weak suppression of d-type superconducting pairing by nonmagnetic scattering, and the coincidence of the angular dependence of the superconducting order parameter and the angular dependence of the electronic density of states (forward scattering predominating). The change in the signs of the components of the effective masses along the Fermi surface can result in the formation of hole pairs (biholes) or electron pairs (bielectrons) on account of the Coulomb interaction in the case of a negative reduced mass of the pairs. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 3, 211–216 (10 August 1998)  相似文献   

7.
We analyze antiferromagnetism and superconductivity in novel Fe-based superconductors within the weak-coupling, itinerant model of electron and hole pockets near (0, 0) and (π, π) in the folded Brillouin zone. We discuss the interaction Hamiltonian, the nesting, the RG flow of the couplings at energies above and below the Fermi energy, and the interplay between SDW magnetism, superconductivity and charge orbital order. We argue that SDW antiferromagnetism wins at zero doping but looses to superconductivity upon doping. We show that the most likely symmetry of the superconducting gap is A1g in the folded zone. This gap has no nodes on the Fermi surface but changes sign between hole and electron pockets. We also argue that at weak coupling, this pairing predominantly comes not from spin fluctuation exchange but from a direct pair hopping between hole and electron pockets.  相似文献   

8.
We investigate the effect of the intersite Coulomb interaction in a planar system with the triangular lattice on the structure of chiral order parameter Δ(p) in the phase of coexisting superconductivity and noncollinear 120° magnetic ordering. It has been established that the Coulomb correlations in this phase initiate the state where the quasi-momentum dependence Δ(p) can be presented as a superposition of the chiral invariants corresponding to the \({d_{{x^2} - {y^2}}} + i{d_{xy}}\) and p x + ip y symmetry types. It is demonstrated that the inclusion of the Coulomb interaction shifts the Δ(p) nodal point positions and, thereby, changes the conditions for a quantum topological transition.  相似文献   

9.
10.
We generalize the dynamical-mean field theory (DMFT) by including into the DMFT equations dependence on the correlation length of the pseudogap fluctuations via the additional (momentum dependent) self-energy Σk. This self-energy describes nonlocal dynamical correlations induced by short-ranged collective SDW-like antiferromagnetic spin (or CDW-like charge) fluctuations. At high enough temperatures, these fluctuations can be viewed as a quenched Gaussian random field with finite correlation length. This generalized DMFT + Σk approach is used for the numerical solution of the weakly doped one-band Hubbard model with repulsive Coulomb interaction on a square lattice with nearest and next nearest neighbor hopping. The effective single impurity problem is solved by using a numerical renormalization group (NRG). Both types of strongly correlated metals, namely, (i) doped Mott insulator and (ii) the case of the bandwidth W ? U (U-value of local Coulomb interaction) are considered. By calculating profiles of the spectral densities for different parameters of the model, we demonstrate the qualitative picture of Fermi surface destruction and formation of Fermi arcs due to pseudogap fluctuations in qualitative agreement with the ARPES experiments. Blurring of the Fermi surface is enhanced with the growth of the Coulomb interaction.  相似文献   

11.
Second Coulomb energy differences, which in the present case are proportional to the tensor Coulomb energy, are calculated for 0+, T = 1 ground states in the region 18 ≦ A ≦ 42 using a shell model that includes a pairing interaction. The calculation is done with a mathematical formalism that includes p-n pairs as well as p-p and n-n pairs. Besides an enhancement of proton-pair Coulomb energies, the pairing interaction is responsible for lowering the Coulomb energy of N = Z members of isospin triplets and also gives rise to an important term in the second energy difference. Using pairing strengths derived from fitting energy levels for mass-18 and mass-42 nuclei, results of the calculation reproduce experimental second energy differences extremely well.  相似文献   

12.
We investigate the pairing symmetry of layered BiS2 compomlds by assuming that electron-electron correlation is still important so that the pairing is rather short range. We lind that the extended .s-wave pairing symmetry always wins over d-wave when the pairing is confined between two short range sites up to next nearest neighbors. The pairing strength is peaked around the doping level :r = 0.5. which is consistent with experimental observation. The extended s-wave pairing symmetry is very robust against spin orbital coupling because it is mainly determined by the structure of Fermi surfaces, Moreover. the extended s-wave pafiring can be distinguished from conventional swave pairing by measuring and comparing superconducting gaps of different Fermi surfaces.  相似文献   

13.
We investigate electronic structure of the new iron chalcogenide high temperature superconductor K1?x Fe2?y Se2 (hole doped case with x = 0.24, y = 0.28) in the normal phase using the novel LDA’+DMFT computational approach. We show that this iron chalcogenide is more correlated in a sense of bandwidth renormalization (energy scale compression by factor about 5 in the interval ±1.5 eV), than typical iron pnictides (compression factor about 2), though the Coulomb interaction strength is almost the same in both families. Our results for spectral densities are in general agreement with recent ARPES data on this system. It is found that all Fe-3d(t 2g ) bands crossing the Fermi level have equal renormalization, in contrast to some previous interpretations. Electronic states at the Fermi level are of predominantly xy symmetry. Also we show that LDA’+DMFT results are in better agreement with experimental spectral function maps, than the results of conventional LDA+DMFT. Finally we make predictions for photoemission spectra lineshape for K0.76Fe1.72Se2.  相似文献   

14.
The characteristic s-surfaces in quasi-momentum space separating pairs of electronic states that can generate elastic waves at the stage of growth of a martensite crystal are determined for a model electronic spectrum of crystals with BCC lattices. The relative number of active electronic states (Reff/R) is numerically estimated for the energy interval Δ = 0.2 eV counted from the Fermi energy level. The dependence of Reff/R on the ratio of the parameters of interaction between the first and second neighbors is calculated for the BCC and FCC lattices. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 18–22, July, 2005.  相似文献   

15.
The possibility of interpreting the normal pseudogap state of cuprates as a result of the formation of spin and charge structures is investigated for solutions of the Hubbard model of a finite 2D cluster based on the mean field method. The iterative self-consistency procedure reduces the initial uncorrelated spin distributions to stable structures. The Fourier components of the charge and spin distributions in such structures have peaks for characteristic incommensurate quasi-momenta depending on the doping. It is shown that for any doping, the density of states of the system has a sharp minimum (pseudogap) at the Fermi level. This emergence of the gap just at the Fermi level is a property typical of not only the superconducting state, but also the normal state of spin glasses. The characteristics of the Fermi surface averaged over the implemented structures and the properties of quasiparticles in the nodal and antinodal regions of the quasi-momentum are considered.  相似文献   

16.
Wei-qiang CHEN&#  &#  &#  &#  &#  Kai-yu YANG&#  &#  &#  &#  &#  Yi ZHOU&#  &#  &#  &#  Fu-chun ZHANG&#  &#  &#  &#  &# 《Frontiers of Physics》2009,4(4):447
Superconductivity in iron pnictides is studied by using a two-orbital Hubbard model in the large U limit. The Coulomb repulsion induces an orbital-dependent pairing between charge carriers. The pairing is found mainly from the scattering within the same Fermi pocket where usually one single orbital dominates. The inter-pocket pair scatterings determine the symmetry of the singlet superconductivity, which is an extended s-wave at small Hund’s coupling, and d-wave at large Hund’s coupling and large U. The former is consistent with recent experiments of ARPES and Andreev reflection spectroscopy. Spin triplet states only become important at large exchange interaction J.  相似文献   

17.
C Deutsch 《Annals of Physics》1978,115(2):404-441
Two-component overall neutral classical Coulomb Gas is considered in the canonical ensemble for any value of the space dimensionality ν. The equilibrium properties, i.e. pair correlations and thermodynamic functions are investigated in two complementary ways. The first one is adequate in considering the low temperature range and uses the “molecular” interaction within a pair of unlike charges as a zero order starting point. On the other hand, the high-temperature fully ionized and translation-invariant plasma is considered within the nodal expression with respect to the classical plasma parameter. These two ways are possible through the use of effective temperature-dependent classical interaction for ν > 2. As a by-product, we obtain a unified treatment of the Coulomb Gas thermal properties with respect to dimensionality (integer or real). We also obtain a contrasting comparison with corresponding properties of the one component plasma model which are already known. In this analysis the ν = 2 two-component Coulomb Gas seems to be a landmark for the other TCP'8. I do not consider degeneracy effects. I consider diffraction corrections in a first order expansion with respect to the Coulomb interaction, in the high-temperature range. The “Hydrogen atom” spectrum is explained for all ν. The long-range hypernetted chain resummation of the pair correlation functions asymptotic behavior does not hold for symmetrical (Z1 = ?Z2) plasmas; the corresponding onset of short-range order disappears when the plasma parameter increases. The modified long- and short-range behaviors of the pair correlation functions are then displayed with the canonical thermodynamics.  相似文献   

18.
For a model electronic spectrum of a bcc crystal, characteristic s-surfaces are found that separate, in the quasi-momentum space, pairs of electronic states potentially active in the generation of elastic waves at the stage of growth of a martensite crystal. Numerical estimation of the fraction of active electronic states (Reff/R) is performed for the energy range Δ = 0.2 eV near the Fermi level. The ratio Reff/R is calculated as a function of the parameter ratio for the interaction between the nearest and the second neighbors for both bcc and fcc lattices. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 44–48, November, 2005.  相似文献   

19.
The dispersion law of one-dimensional plasmons in a quasi-one-dimensional system of massless Dirac fermions has been calculated. Two model two-dimensional systems where bands of edge states filled with such Dirac fermions appear at the edge have been considered. Edge states in the first system, topological insulator, are due to topological reasons. Edge states in the second system, system of massive Dirac fermions, have Tamm origin. It has been shown that the dispersion laws of plasmons in both systems in the long-wavelength limit differ only in the definition of the parameters (velocity and localization depth of Dirac fermions). The frequency of plasmons is formally quantum (ω ∝ ? ?1/2) and, in the case of the Coulomb interaction between electrons, depends slightly on the Fermi level E F. The dependence on E F is stronger in the case of short-range interaction. The quantum features of oscillations of massless one-dimensional Dirac fermions are removed by introducing the mass of Dirac fermions at the Fermi level and their density. Correspondence to the dispersion law of classical one-dimensional plasma oscillations in a narrow stripe of “Schrödinger” electrons has been revealed.  相似文献   

20.
We investigate the long distance asymptotics of various correlation functions for the one-dimensional spin-1/2 Fermi gas with attractive interactions using the dressed charge formalism. In the spin polarized phase, these correlation functions exhibit spatial oscillations with a power-law decay whereby their critical exponents are found through conformal field theory. We show that spatial oscillations of the leading terms in the pair correlation function and the spin correlation function solely depend on ΔkF and 2ΔkF, respectively. Here ΔkF=π(nn) denotes the mismatch between the Fermi surfaces of spin-up and spin-down fermions. Such spatial modulations are characteristics of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. Our key observation is that backscattering among the Fermi points of bound pairs and unpaired fermions results in a one-dimensional analog of the FFLO state and displays a microscopic origin of the FFLO nature. Furthermore, we show that the pair correlation function in momentum space has a peak at the point of mismatch between both Fermi surfaces kkF, which has recently been observed in numerous numerical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号