首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colloidosomes, namely, microcapsules coated by a colloidal shell, have been widely studied as potential carriers of active compounds for various applications. The colloidal shell differs from the shells of other ‘somes’ (liposomes, polymersomes) since it is a composite material with an impenetrable phase—the particles, and a penetrable one—the voids or pores between them. Recent analysis shows that in the shells composed of monodisperse and charged particles, the maximal volume fraction of colloids in the self-assembled layer depends on the size ratio between the particle's hard-sphere radius and the effective radius, which includes the range of repulsive electrostatic interactions. Thus, somewhat counter-intuitively, the density of particles in the shell increases with increasing particle radius. However, mixing particle sizes can lead to highly packed shells where the impenetrable phase volume fraction approaches 100%. The diffusional flux through the colloidal shell is highly sensitive to the packing density (or particle volume fraction); this parameter sets the average size of the pores, their distribution through the shell, and their tortuosity. However, while in thick multi-layer shells the flux increases with increasing particle size, in the case of monolayer-thick shells there is no apparent dependence of the flux on the colloid dimensions.  相似文献   

2.
Colloidosomes are aqueous cores surrounded by a shell composed of packed colloidal particles. Recent studies suggest that these colloidal shells reduce, or even inhibit, the transport of molecular species (diffusants). However, the effect of the colloidal shell on transport is unclear: In some cases, the reduction in transport of diffusants through the shell was found to be independent of the size of the colloidal particles composing the shell. Other studies find, however, that shells composed of small colloidal particles of order 100nm or less hindered transport of diffusants more than those composed of micro-scale colloidal particles. In this paper we present a simple diffusion model that accounts for three processes that reduce diffusant transport through the shell: (i) a reduction in the penetrable volume available for transport, which also increases the tortuousity of the diffusional path, (ii) narrow pore size which may hinder transport for larger diffusants through size exclusion, and (iii) a reduction in interfacial area due to 'blocking' of the surface by the adsorbed particles. We find that the colloidal particle size does not affect the reduction in transport through the colloidal shell when the shell is a monolayer. However, in closely packed, thick layers where the thickness of the multi-layer shell is fixed, the rate of transport decreases significantly with colloidal particle dimensions. These results are in excellent agreement with previously published experimental results.  相似文献   

3.
A mathematical model describing single-component and multi-component adsorption in columns with bidisperse perfusive or bidisperse purely diffusive adsorbent particles is constructed and presented. The model is used to study the adsorption of lysozyme onto monocional anti-lysozyme in columns with bidisperse porous adsorbent particles. The influence of the effective pore diffusion coefficient of the adsorbate in the microparticles (microspheres) and the effects of particle size and intraparticle convective flow on column performance are examined. The results for the systems studied indicate that the systems with bidisperse perfusive particles provide a higher dynamic utilization of the adsorptive capacity of the column than the systems having bidisperse purely diffusive particles.  相似文献   

4.
Many types of colloidal particles possess a core-shell morphology. In this Article, we show that, if the core and shell densities differ, this morphology leads to an inherent density distribution for particles of finite polydispersity. If the shell is denser than the core, this density distribution implies an artificial narrowing of the particle size distribution as determined by disk centrifuge photosedimentometry (DCP). In the specific case of polystyrene/silica nanocomposite particles, which consist of a polystyrene core coated with a monolayer shell of silica nanoparticles, we demonstrate that the particle density distribution can be determined by analytical ultracentrifugation and introduce a mathematical method to account for this density distribution by reanalyzing the raw DCP data. Using the mean silica packing density calculated from small-angle X-ray scattering, the real particle density can be calculated for each data point. The corrected DCP particle size distribution is both broader and more consistent with particle size distributions reported for the same polystyrene/silica nanocomposite sample using other sizing techniques, such as electron microscopy, laser light diffraction, and dynamic light scattering. Artifactual narrowing of the size distribution is also likely to occur for many other polymer/inorganic nanocomposite particles comprising a low-density core of variable dimensions coated with a high-density shell of constant thickness, or for core-shell latexes where the shell is continuous rather than particulate in nature.  相似文献   

5.
A comprehensive theory is presented for the dynamics of metal speciation in monodisperse suspensions of soft spherical particles characterized by a hard core and an ion-permeable shell layer where ligands L are localized. The heterogeneity in the binding site distribution leads to complex formation/dissociation rate constants (denoted as k a (*) and k d (*), respectively) that may substantially differ from their homogeneous solution counterparts (k a and k d). The peculiarities of metal speciation dynamics in soft colloidal ligand dispersions result from the coupling between diffusive transport of free-metal ions M within and around the soft surface layer and the kinetics of ML complex formation/dissociation within the shell component of the particle. The relationship between k a,d (*) and k a,d is derived from the numerical evaluation of the spatial, time-dependent distributions of free and bound metal. For that purpose, the corresponding diffusion equations corrected by the appropriate chemical source term are solved in spherical geometry using a Kuwabara-cell-type representation where the intercellular distance is determined by the volume fraction of soft particles. The numerical study is supported by analytical approaches valid in the short time domain. For dilute dispersions of soft ligand particles, it is shown that the balance between free-metal diffusion within and outside of the shell and the kinetic conversion of M into ML within the particular soft surface layer rapidly establishes a quasi-steady-state regime. For sufficiently long time, chemical equilibrium between the free and bound metal is reached within the reactive particle layer, which corresponds to the true steady-state regime for the system investigated. The analysis reported covers the limiting cases of rigid particles where binding sites are located at the very surface of the particle core (e.g., functionalized latex colloids) and polymeric particles that are devoid of a hard core (e.g., polysaccharide macromolecules, gel particles). For both the transient and quasi-steady-state regimes, the dependence of k a,d (*) on the thickness of the soft surface layer, the radius of the hard core of the particle, and the kinetic rate constants k a,d for homogeneous ligand solutions is thoroughly discussed within the context of dynamic features for colloidal complex systems.  相似文献   

6.
A method for the preparation of stripe‐like monolayers of microspheroids is described. The particles were obtained from polystyrene core/polyglycidol‐rich shell microspheres by stretching poly (vinyl alcohol) films that contain embedded particles. The stretching was performed under controlled conditions at temperatures above the Tg of the films and particles. The elongated films were dissolved in water, and the microspheroids were subsequently removed and purified from the poly (vinyl alcohol). The aspect ratio (AR) of the particles, which denotes the ratio of the lengths of the longer to shorter particle axes, was determined by the film elongation. The AR values were in the range of 2.9‐7.7. Spheroidal particles with various ARs were deposited onto silicon wafers from an ethanol (EtOH) suspension. The particle concentration and volume of the suspension were the same in each experiment. Evaporation of the EtOH yielded stripes of spherical particles packed into nematic‐type colloidal crystals and assembled into monolayers. The orientation of the stripes after ethanol evaporation was perpendicular to the triphasic (silicon‐ethanol‐air) interface along the silicon substrate. The adsorbed stripes on the wafers were characterized in terms of their interstripe distance (ID), stripe width, and crystal domain size. Nematic‐type spheroid arrangements in the stripes were the dominant structure, which enabled denser packing of the particles into colloidal crystals than that allowed by the smectic‐type arrangements. Furthermore, the number of spheroids adsorbed per surface unit of the silicon wafers was similar for all ARs, but the width and frequency of the spheroid stripes adsorbed on the wafers were different.  相似文献   

7.
《Supramolecular Science》1997,4(3-4):265-273
Monodisperse spherical polymer particles with anionic and cationic shells were studied for their monolayer formation and compression behaviour on an aqueous subphase as a function of pH and salt (KCl) concentration. In addition, monolayers of monodisperse and bidisperse mixtures of 434 and 214 nm sized anionic particles were studied for their morphology by scanning electron microscopy (SEM). The anionic particles were prepared by soap-free emulsion polymerization of styrene and acrylic acid, and the cationic particles from styrene and 2-acryloxyethyl trimethylammonium chloride. Independent of the chemical nature of the shell, the particles formed monolayers at high salt or acid concentration in the subphase. However, at neutral pH and if no salt was present in the subphase only a part of the spheres formed monolayers, while the residual particles disappeared into the subphase. The origin of this behaviour is discussed in terms of ionization and electrostatic shielding of the polar groups.Compressed monolayers of monodisperse particles consisted of randomly oriented domains of up to 20 particles with small holes in between, the holes not exceeding two particle diameters in size. Films of bidisperse mixtures were highly disordered. If small particles were present in excess, they formed a fairly disordered monolayer and the large particles were situated on top or below this layer. If the number ratio of both sorts of particles approached unity, the texture became disordered and bi- and multilayered aggregates were observed.  相似文献   

8.
Colloidal dispersions of calcium carbonate in toluene, with the particles stabilised by an alkyl aryl sulphonic acid, have been examined by small angle neutron scattering. On the basis of the assumption that the adsorbed layer of stabilising surface active agent formed a concentric shell around a spherical calcium carbonate core particle, a method was developed to determine both the radius of the core particle and the thickness of the adsorbed layer. For the two series of particles examined the calcium carbonate core particles were found to have radii of 22 and 67 å respectively and in both cases the adsorbed layer thickness was found to be 19.0±1 å. The method provides a means of obtaining adsorbed layer thicknesses under conditions where particle and layer cannot be separated.  相似文献   

9.
Adsorption of nanoparticles at the solid-liquid interface   总被引:1,自引:0,他引:1  
The adsorption of differently charged nanoparticles at liquid-solid interfaces was investigated by in situ X-ray reflectivity measurements. The layer formation of positively charged maghemite (γ-Fe(2)O(3)) nanoparticles at the aqueous solution-SiO(2) interface was observed while negatively charged gold nanoparticles show no adsorption at this interface. Thus, the electrostatic interaction between the particles and the charged surface was determined as the driving force for the adsorption process. The data analysis shows that a logarithmic particle size distribution describes the density profile of the thin adsorbed maghemite layer. The size distribution in the nanoparticle solution determined by small angle X-ray scattering shows an average particle size which is similar to that found for the adsorbed film. The formed magehemite film exhibits a rather high stability.  相似文献   

10.
The properties of polymer-coated magnetite nanoparticles, which have the potential to be used as effective magnetic resonance contrast agents, have been studied. The magnetite particles were synthesized by using continuous synthesis in an aqueous solution. The polymer-coated magnetite nanoparticles were synthesized by seed precipitation polymerization of methacrylic acid and hydroxyethyl methacrylate in the presence of the magnetite nanoparticles. The particle size was measured by laser light scattering. It was shown that the particle size, variance, magnetic properties, and stability of aqueous magnetite colloidal dispersion strictly depend on the nature of the stabilizing agent. The average hydrodynamic radius of the magnetite particles was found to be 5.7 nm in the stable aqueous colloidal dispersion. An inclusion of the magnetite particle into a hydrophilic polymeric shell increases the stability of the dispersion and decreases the influence of the stabilizing agent on the magnetic and structural properties of the magnetite particles as was shown by X-ray diffraction and M?ssbauer and IR spectroscopy, as well as by vibrating sample magnetometry. The variation in the polymeric shell size and the polymer net density can be useful tools for evaluation of the polymer-coated magnetite particles as effective contrast agents. Copyright 1999 Academic Press.  相似文献   

11.
The electrophoretic mobility and temperature-dependent particle size of poly(N-isopropylacrylamide) (PNiPAM) microgels after alternating adsorption of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) have been determined. First a PNiPAM-co-acrylic acid (AAc) shell was added to the PNiPAM microgel, then PDADMAC and PSS were adsorbed alternately. The studies of the electrophoretic mobility revealed charge reversal when a polyelectrolyte (PE) layer was adsorbed. Particle size measurements revealed a strong influence of polyelectrolyte adsorption on the temperature-dependent particle swelling. The strong influence of the adsorbed polyelectrolyte on the particle size is in contrast to polyelectrolyte multilayer adsorption on rigid particles.  相似文献   

12.
A new and versatile way--using poly(dimethylsiloxane) (PDMS) sheets to layer-by-layer (LbL) transfer hexagonal-close-packed particle monolayers from preformed colloidal crystals and stack them on substrates-has been demonstrated to create colloidal crystals. This approach allows LbL control of the thickness of the resulting crystals and especially of the size and the packing structure of the particles in each layer. Furthermore, it also allows fabrication of binary colloidal crystals over large areas by deformation of the PDMS sheets during LbL transfer. Two new binary crystals-one composed of identically sized particles but in different densities and the other of a nonclose-packed monolayer of large particles and a close-packed monolayer of small particles-were created, which are hard grown by other colloidal crystallization techniques developed thus far.  相似文献   

13.
Zeolite A suspensions with a monomodal, narrow particle size distribution have been prepared. The suspended particles in a TMAOH water solution at pH 9 are negatively charged with a zeta potential of −43 mV. Modification of the external surface of the zeolite particles by a silylation reaction produces particles that, when they are suspended in water, are positively charged and have a zeta potential of +40 mV.The suspensions of the negatively or positively charged particles can be used for the preparation of adsorbed layers of particles on oppositely charged substrates by electrostatic attraction. This deposition process leads to a high coverage of the substrate with well-adhered particles. The cubic morphology of the zeolite particles results in preferential orientation after deposition. The particles are oriented with their {h 0 0} planes (cube faces) parallel and perpendicular to the substrate (out-of-plane orientation). The particles are randomly oriented with respect to the direction perpendicular to the substrate (in-plane orientation). Although, under optimized conditions, the coverage is high and only one adsorption cycle is necessary, the particles are not closely packed.Alternately, the zeolite particle suspensions can be used to deposit close-packed arrays of particles by convective particle transport during dip coating on substrates bearing the same charge as the zeolite particles. Using monodispersed zeolite A suspensions and slow speed dip coating close-packed hexagonal colloidal crystals were prepared. The type of colloidal crystal deposits formed range from continuous sublayers, monolayers, or multilayers to isolated discoidal clusters consisting of few zeolite particles. Factors affecting the deposited layer(s) structure are particle concentration of the suspension and withdrawal speed. In addition to close packing, the layers prepared by dip coating exhibit preferred orientation with the particle faces lying parallel and perpendicular to the substrate surface. Moreover, this second route of precursor film formation by colloidal crystallization leads to domains of well-aligned zeolite particles in three dimensions, i.e. with their faces parallel to each other. The oriented domains span the length of several particles; however, low angle boundaries and other defects during colloidal crystallization prevent the formation of macroscopically three-dimensionally ordered zeolite particles.The precursor layers were subjected to secondary growth in order to prepare continuous intergrown films. Secondary growth proceeds initially by local epitaxy on the deposited particles. Later in the process, deposition proceeds by incorporation of particles from solution along with re-nucleation on the growing film. The intergrown films have predominately [h 0 0] out-of-plane orientation; however, after extended secondary growth treatment a population of [h h h] grains appears on the surface of the regrown films.  相似文献   

14.
Monodisperse micron-sized styrene-acrylonitrile copolymer (SAN) particles with three different sizes (about 5, 10, and 15 microm) were prepared by a two-step seeded polymerization and used for a study of bidisperse electrorheological (ER) suspensions. The effect of the particle size and the size-mixing fraction on ER properties was studied with varying the size of these monodisperse copolymer particles. When the two particle sizes were mixed, the suspension generally showed a decrease in the shear yield stress, reaching a minimum value. However, a bidisperse ER suspension of large particles containing a small fraction of fine particles showed an interesting synergy effect of size mixing on ER response, giving enhanced yield stresses over the other size-mixing fractions. This synergistic ER suspension also showed a great increase in the viscoelastic property. The current density of suspensions was maximum at the synergistic bidisperse suspension. This synergy effect in a particular bidisperse suspension was investigated in view of the structure model consideration and was concluded to be due to a close packing and a peculiar structural ordering at an optimum size ratio and mixing fraction.  相似文献   

15.
Fourier transform relaxation NMR has been used to study how the mobility of poly(ethylene oxide) is affected by its adsorption onto colloidal silica particles of various sizes. Novel results have been obtained which illustrate the unexploited potential of this method for the study of interfacial species in complex systems. The results quantify how polymer mobility varies along an adsorption isotherm. When the particles are in excess, the polymer is strongly adsorbed and hence has a large spin-spin magnetic relaxation rate constant, R(2). The value of R(2) in this region increases with particle size, because the associated reduction in particle surface curvature results in a reduction in the mobility of the adsorbed polymer. This is accompanied by a reduction in the signal intensity, as a higher fraction of the polymer is adsorbed in the form of train segments too immobile to detect using the Carr-Purcell-Meiboom-Gill pulse sequence. When the polymer concentration reaches approximately 0.5 mg m(-2), the initial region of high affinity adsorption ends and so the polymer solution concentration increases. This is accompanied by a reduction in R(2), which then approaches the value for a simple polymer solution in the absence of particles. The results are corroborated by comparison with rheological measurements and molecular dynamics simulations of an analogous particle-polymer system.  相似文献   

16.
The interaction of amorphous colloidal silica (SiO(2)) nanoparticles of well-defined sizes with a dioleoyl phosphatidylcholine (DOPC) monolayer on a mercury (Hg) film electrode has been investigated. It was shown using electrochemical methods and microcalorimetry that particles interact with the monolayer, and the electrochemical data shows that the extent of interaction is inversely proportional to the particle size. Scanning electron microscopy (SEM) images of the electrode-supported monolayers following exposure to the particles shows that the nanoparticles bind to the DOPC monolayer irrespective of their size, forming a particle monolayer on the DOPC surface. A one-parameter model was developed to describe the electrochemical results where the fitted parameter is an interfacial layer thickness (3.2 nm). The model is based on the adsorptive interactions operating within this interfacial layer that are independent of the solution pH and solution ionic strength. The evidence implies that the most significant forces determining the interactions are van der Waals in character.  相似文献   

17.
A model that describes the diffusive and electrophoretic mass transport of the cation and anion species of a buffer electrolyte and of a charged adsorbate in the liquid film surrounding nonporous adsorbent particles in a finite bath adsorption system, in which adsorption of the charged adsorbate onto the charged surface of the nonporous particles occurs, is constructed and solved. The dynamic behavior of the mechanisms of this model explicitly demonstrates (a) the interplay between the diffusive and electrophoretic molar fluxes of the charged adsorbate and of the species of the buffer electrolyte in the liquid film surrounding the nonporous adsorbent particles, (b) the significant effect that the functioning of the electrical double layer has on the transport of the charged species and on the adsorption of the charged adsorbate, and (c) the substantial effect that the dynamic behavior of the surface charge density has on the functioning of the electrical double layer. It is found that at equilibrium, the value of the concentration of the charged adsorbate in the fluid layer adjacent to the surface of the adsorbent particles is significantly greater than the value of the concentration of the adsorbate in the finite bath, while, of course, the net molar flux of the charged adsorbate in the liquid film is equal to zero at equilibrium. This result is very different than that obtained from the conventional model that is currently used to describe the transport of a charged adsorbate in the liquid film for systems involving the adsorption of a charged adsorbate onto the charged surface of nonporous adsorbent particles; the conventional model (i) does not consider the existence of an electrical double layer, (ii) assumes that the transport of the charged adsorbate occurs only by diffusion in the liquid film, and (iii) causes at equilibrium the value of the charged adsorbate in the liquid layer adjacent to the surface of the particles to become equal to the value of the concentration of the charged adsorbate in the liquid of the finite bath. Furthermore, it was found that a maximum can occur in the dynamic behavior of the concentration of the adsorbate in the adsorbed phase when the value of the free molecular diffusion coefficient of the adsorbate is relatively large, because the increased magnitude of the synergistic interplay between the diffusive and electrophoretic molar fluxes of the adsorbate in the liquid film allows the adsorbate to accumulate (to be entrapped) in the liquid layer adjacent to the surface of the adsorbent particles faster than the concentrations of the electrolyte species, whose net molar fluxes are significantly hindered due to their opposing diffusive and electrophoretic molar fluxes, can adjust to account for the change in the surface charge density of the particles that arises from the adsorption of the charged adsorbate. The results presented in this work also have significant implications in finite bath adsorption systems involving the adsorption of a charged adsorbate onto the surface of the pores of charged porous adsorbent particles, because the diffusion and the electrophoretic migration of the charged solutes (cations, anions, and charged adsorbate) in the pores of the adsorbent particles will depend on the dynamic concentration profiles of the charged solutes in the liquid film surrounding the charged porous adsorbent particles. The results of the present work are also used to illustrate how the functioning of the electrical double layer could contribute to the development of inner radial humps (concentration rings) in the concentration of the adsorbate in the adsorbed phase of charged porous adsorbent particles.  相似文献   

18.
The adsorption properties of thermosensitive graft-copolymers are investigated with the aim of developing self-assembled multilayers from these copolymers. The copolymers consist of a thermoreversible main chain of poly(N-isopropylacrylamid) and a weak polyelectrolyte, poly(2-vinylpyridine), as grafted side chains. Zeta-potential, single particle light scattering and adsorption isotherms monitor the adsorption of the thermoreversible copolymers to precoated colloidal particles. The results show a smaller surface coverage for a larger density of grafted chains. The surface coverage is discussed in terms of surface charge density in the adsorbed monolayer. Taking into account the monolayer adsorption properties, conditions are developed for the multilayer formation from these copolymers. A low pH provides a sufficient charge density of the grafted chains to achieve a surface charge reversal of the colloids upon adsorption. The charge reversal after each adsorbed layer is monitored by zeta-potential and the increase of the thickness is determined by light scattering. Stable and reproducible multilayers are obtained. The results imply that the conformation of the thermosensitive component in multilayers depends strongly on the grafting density, where the polymer with a higher grafting density adsorbs in a flat conformation while that with a lower grafting density adsorbs with more loops.  相似文献   

19.
Aminodextran containing submicron magnetic latex particles were prepared in two steps: (a) transformation of oil-in-water magnetic emulsion into structured magnetic latex particles via combination of seed and miniemulsion-like polymerization process and (b) immobilization (adsorption and chemical grafting) of prepared aminodextran onto negatively charged seed magnetic latex particles. The elaborated magnetic latex particles were characterized in terms of particle size, size distribution, morphology, surface charge density, chemical composition, magnetic properties, and also colloidal stability. The results showed that the morphology of the prepared seed magnetic latex is core–shell like and the cationic latex particles are hydrophilic and of high colloidal stability, irrespective of the aminodextran immobilization process.  相似文献   

20.
We have developed a model polymer/metal composite system based on the adsorption of colloidal gold particles from a dilute aqueous suspension to the surface of poly(2-vinylpyr-idine) (PVP). Particle coverages and tracer diffusion coefficients for the particles within a PVP matrix phase were measured by Rutherford backscattering spectrometry. The adsorption process is quantitatively described by a diffusion-limited mechanism where gold particles irreversibly adsorb to the surface of the polymer film. Model dispersions produced in this way are excellent model systems for studying the fundamental properties of metal particle dispersions, since the particle size and the areal density of particles on the surface are well-controlled. Diffusion coefficients for the gold particles within PVP were also measured. The diffusion of the gold particles was found to be coupled to the bulk viscosity of the polymer, even though the size of the gold particles was only slightly larger than the mesh size of the entanglement network for PVP. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号