首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 86 毫秒
1.
Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence of the reversible magnetic field-induced reorientation. Magnetic domain structure and twin structure of the film were controlled by the in- terplay of the magnetic and temperature field. With cooling under an out-of-plane magnetic field, the evolution of magnetic domain structure reveals that martensitic transformation could be divided into two periods: nucleation and growth. With an in-plane magnetic field applied to a thermomagnetic-treated film, the evolution of magnetic domain structure gives evidence of a reorientation of twin variants of martensite. A microstructural model is described to define the twin structure and to produce the magnetic domain structure at the beginning of martensitic transformation; based on this model, the relationship between the twin structure and the magnetic domain structure for the treated film under an in-plane field is also described.  相似文献   

2.
3.
A nominally undoped wurtzite ZnO thin film of highly c-axis orientation was successfully grown on (001) silicon by metal-organic chemical vapour deposition, and its photoluminescence was measured as a function of excitation intensity at room temperature. The ZnO sample exhibited a strong near band-edge (NBE) line at 379.48nm (3.267eV) and a weak broad green band around-510 nm (2.43eV), showing a linear and sublinear excitation dependence of the luminescence intensity, respectively. No discernible intensity dependence of lineshape and emission peak was found for the NBE line. On the other hand, the peak energy of the green luminescence was found to increase nearly logarithmically with the increasing excitation intensity. The above results clearly indicate that in the ZnO epilayer, the NBE line was due to an excitonic spontaneous emission, while the mid-gap green luminescence can be assigned to the tunnel-assisted donor-acceptor pair (DAP) radiative recombination.Moreover, we obtained an energy depth β-11.74 meV for the potential wells due to the fluctuating distribution of the unintentional impurities/defects responsible for the tunnel-assisted DAP emission.  相似文献   

4.
The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni-Mn- Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy difference between paramagnetic and ferromagnetic austenite states plays an important role in the magnetic transition of Ni-Mn-Sn under pressure. The pressure increases the relative stability of the martensite with respect to the anstenite, leading to an increase of the martensitic transformation temperature. Moreover, the effects of pressure on the magnetic properties and the martensitic transformation are discussed based on the electronic structure.  相似文献   

5.
This work focuses on the crystal structure and magnetic properties of the hard magnetic Sm2 Fe17 Nδ films prepared by dc magnetron sputtering and the subsequent nitriding process. The XRD, EDS, M-H and M-T data show that N enters the cell structure and the films with the single Th2Zn17 phase are obtained when the nitriding temperature varies from 300 to 400℃, thus the maximum value of the coercivity Hc reaches 2561.7Oe. However, the Sm2Fo17 phase decomposes to the StuN nonmagnetic phase and the α-Fe soft magnetic phase with further increasing nitriding temperature, which corresponds to the decreasing Hc. Furthermore, the easy magnetization direction (EMD) is found to locate randomly in the film plane. This texture can not give an excellent MR/Ms higher than the Stoner-Wohlfarth limitation (MR/Ms = 0.5), which agrees well with the observed low MR/Ms (0.58). It is suggested that the magnetization reversal process is dominated by the nucleation mechanism according to the initial magnetization curve and the dependence of Hc on the field H.  相似文献   

6.
刘珂  周清  周勋  郭祥  罗子江  王继红  胡明哲  丁召 《中国物理 B》2013,22(2):26801-026801
The present paper discusses our investigation of InGaAs surface morphology annealed for different lengths of time.After annealing for 15 min,the ripening of InGaAs islands is completed.The real space scanning tunneling microscopy(STM) images show the evolution of InGaAs surface morphology.A half-terrace diffusion theoretical model based on thermodynamic theory is proposed to estimate the annealing time for obtaining flat morphology.The annealing time calculated by the proposed theory is in agreement with the experimental results.  相似文献   

7.
We fabricate Fe3O4 thin films on Si(100) substrates at different temperatures using pulsed laser deposition, and study the effect of annealing and deposition temperature on the structural and magnetic properties of Fe3O4 thin films. Subsequently, the films are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometery (VSM). The XRD results of these films confirm the presence of the Fe3O4 phase and show room-temperature ferromagnetism, as observed with VSM. We demonstrate the optimized deposition and annealing conditions for an enhanced magnetization of 854 emu/cm3 that is very high when compared to the bulk sample.  相似文献   

8.
Cubic boron nitride (c-BN) films were deposited on Si(001) substrates in an ion beam assisted deposition (IBAD) system under various conditions, and the growth parameter spaces and optical properties of c-BN films have been investigated systematically. The results indicate that suitable ion bombardment is necessary for the growth of c-BN films, and a well defined parameter space can be established by using the P/a-parameter. The refractive index of BN films keeps a constant of 1.8 for the c-BN content lower than 50%, while for c-BN films with higher cubic phase the refractive index increases with the c-BN content from 1.8 at χc =50% to 2.1 at χc = 90%. Furthermore, the relationship between n and p for BN films can be described by the Anderson-Schreiber equation, and the overlap field parameter γ is determined to be 2.05.  相似文献   

9.
A method of clarifying bioaerosol particles is proposed based on T-matrix. Size and shape characterizations are simultaneously acquired for individual bioaerosol particles by analyzing the spatial distribution of scattered light. The particle size can be determined according to the scattering intensity,while shape information can be obtained through asymmetry factor(AF) . The azimuthal distribution of the scattered light for spherical particles is symmetrical,whereas it is asymmetrical for non-spherical ones,and the asymmetry becomes intense with increasing asphericity. The calculated results denote that the 5 –10 scattering angle is an effective range to classify the bioaerosol particles that we are concerned of. The method is very useful in real-time environmental monitoring of particle sizes and shapes.  相似文献   

10.
The electronic and optical properties of zincblende ZnX(X=S, Se, Te) and ZnX:Co are studied from density functional theory (DFT) based first principles calculations. The local crystal structure changes around the Co atoms in the lattice are studied after Co atoms are doped. It is shown that the Co-doped materials have smaller lattice constant (about 0.6%-0.9%). This is mainly due to the shortened Co-X bond length. The (partial) density of states (DOS) is calculated and differences between the pure and doped materials are studied. Results show that for the Co-doped materials, the valence bands are moving upward due to the existence of Co 3d electron states while the conductance bands are moving downward due to the reduced lattice constants. This results in the narrowed band gap of the doped materials. The complex dielectric indices and the absorption coefficients are calculated to examine the influences of the Co atoms on the optical properties. Results show that for the Co-doped materials, the absorption peaks in the high wavelength region are not as sharp and distinct as the undoped materials, and the absorption ranges are extended to even higher wavelength region.  相似文献   

11.
Polycrystalline Ni-Mn-Ga thin films were deposited by the d.c. magnetron sputtering on well-cleaned substrates of Si(1 0 0) and glass at a constant sputtering power of 36 W. We report the influence of sputtering pressure on the composition, structure and magnetic properties of the sputtered thin films. These films display ferromagnetic behaviour only after annealing at an elevated temperature and a maximum saturation magnetization of 335 emu/cc was obtained for the films investigated. Evolution of martensitic microstructure was observed in the annealed thin films with the increase of sputtering pressure. The thermo-magnetic curves exhibited only magnetic transition in the temperature range of 339-374 K. The thin film deposited at high sputtering pressure of 0.025 mbar was found to be ordered L21 austenitic phase.  相似文献   

12.
C. Liu  X. An  L.X. Gao 《Applied Surface Science》2008,254(9):2861-2865
In present paper, the off-stoichiometric Ni-Mn-Ga ferromagnetic shape memory alloy thin films are fabricated using radio frequency magnetron sputtering method. The compositions, microstructures and mechanical properties of the thin films are characterized by energy dispersive X-ray spectrum (EDAX), X-ray photoelectron spectroscopy (XPS), scanning electronic microscope (SEM), atomic force microscope (AFM) and nanoindentation test, respectively. The results show that there is a thinner layer of oxides consisting of NiO, Ga2O3 and an unspecified manganese oxidation (MnxOy) at the surface, whereas a small amount of MnO precipitates exist in internal layers of post-annealed Ni-Mn-Ga thin films. The hardness and elastic modulus decrease with increasing film thickness. Nanoindentation tests reveal that the hardness and elastic modulus of the films can be up to 5.5 and 155 GPa, respectively. The Ni-Mn-Ga thin films have remarkably improved the ductility of Ni-Mn-Ga ferromagnetic shape memory alloys bulk materials.  相似文献   

13.
The residual stress instituted in Ni-Mn-Ga thin films during deposition is a key parameter influencing their shape memory applications by affecting its structural and magnetic properties. A series of Ni-Mn-Ga thin films were prepared by dc magnetron sputtering on Si(1 0 0) and glass substrates at four different sputtering powers of 25, 45, 75 and 100 W for systematic investigation of the residual stress and its effect on structure and magnetic properties. The residual stresses in thin films were characterized by a laser scanning technique. The as-deposited films were annealed at 600 °C for 1 h in vacuum for structural and magnetic ordering. The compressive stresses observed in as-deposited films transformed into tensile stresses upon annealing. The annealed films were found to be crystalline and possess mixed phases of both austenite and martensite, exhibiting good soft magnetic properties. It was found that the increase of sputtering power induced coarsening in thin films. Typical saturation magnetization and coercivity values were found to be 330 emu/cm3 and 215 Oe, respectively. The films deposited at 75 and 100 W display both structural and magnetic transitions above room temperature.  相似文献   

14.
We present a systematic investigation of magnetic anisotropy induced by oblique deposition of Co thin films on MgO(001) substrates by molecular beam epitaxy at different deposition angles,i.e.,0?,30?,45?,60?,and 75?with respect to the surface normal.Low energy electron diffraction(LEED),surface magneto–optical Kerr effect(SMOKE),and anisotropic magnetoresistance(AMR) setups were employed to investigate the magnetic properties of cobalt films.The values of in-plane uniaxial magnetic anisotropy(UMA) constant Ku and four-fold magnetocrystalline anisotropy constant K1 were derived from magnetic torque curves on the base of AMR results.It was found that the value of Ku increases with increasing deposition angle with respect to the surface normal,while the value of K_1 remains almost constant for all the samples.Furthermore,by using MOKE results,the Ku values of the films deposited obliquely were also derived from the magnetization curves along hard axis.The results of AMR method were then compared with that of hard axis fitting method(coherent rotation) and found that both methods have almost identical values of UMA constant for each sample.  相似文献   

15.
The prospect of using ferromagnetic shape memory alloys (FSMAs) is promising for a resonant actuator that requires large strain output and a drive frequency below 1 kHz. In this investigation, three FSMA actuators, equipped with tetragonal off-stoichiometric Ni2MnGa single crystals, were developed to study their frequency response and resonant characteristics. The first actuator, labeled as A1, was constructed with low-k bias springs and one Ni-Mn-Ga single crystal. The second actuator, labeled as A2, was constructed with high-k bias springs and one Ni-Mn-Ga crystal. The third actuator, labeled as A3, was constructed with high-k bias springs and two Ni-Mn-Ga crystals connected in parallel. The three actuators were magnetically driven over the frequency range of 10 Hz-1 kHz under 2 and 3.5 kOe magnetic-field amplitudes. The field amplitude of 2 kOe is insufficient to generate significant strain output from all three actuators; the maximum magnetic-field-induced strain (MFIS) at resonance is 2%. The resonant MFIS output improves to 5% under 3.5-kOe amplitude. The frequency responses of all three actuators show a strong effect of the spring k constant and the Ni-Mn-Ga modulus stiffness on the resonant frequencies. The resonant frequency of the Ni-Mn-Ga actuator was raised from 450 to 650 Hz by increasing bias spring k constant and/or the number of Ni-Mn-Ga crystals. The higher number of the Ni-Mn-Ga crystals not only increases the magnetic force output but also raises the total stiffness of the actuator resulting in a higher resonant frequency. The effective modulus of the Ni-Mn-Ga is calculated from the measured resonant frequencies using the mass-spring equation; the calculated modulus values for the three actuators fall in the range of 50-60 MPa. The calculated effective modulus appears to be close to the average modulus value between the low twinning modulus and high elastic modulus of the untwined Ni-Mn-Ga crystal.  相似文献   

16.
用Si元素替代CoNiGa合金中的Ga元素后,研究了材料的结构、马氏体相变及其磁性的变化.结果发现,当Si原子的含量在0—10%范围内,材料能够形成体心立方结构,并且具有很好的热弹性马氏体相变行为.进一步研究指出,简单的从掺杂元素的原子半径大小来判断其对奥氏体稳定性的影响是不够的,必须从考虑掺杂原子与基本元素原子半径之间的比例来考虑这一问题.同时还发现Curie温度和饱和磁化强度随着Si含量的上升而有所降低,但是其马氏体的各向异性随着Si含量的增加而增强,这一点对于在合金中获得大磁感生应变具有指导意义. 关键词: 铁磁形状记忆合金 马氏体相变 CoNiGaSi合金  相似文献   

17.
The in-plane magnetic anisotropy of Fe/NiO bilayers was studied quantitatively as a function of NiO thickness using the magneto-optical Kerr effect with a rotating field. For NiO thicker than the ordering transition thickness, the total in-plane fourfold anisotropy of the Fe layer decreases with NiO thickness in Fe/NiO/Au(001), but increases in Fe/NiO/MgO(001). Our result indicates that the exchange coupling in an Fe/NiO bilayer might induce an additional in-plane fourfold anisotropy, and the opposite thickness dependent behaviors may be attributed to the different Ni2+ antiferromagnetic spin orientations for NiO films grown on Au(001) and MgO(001) surfaces.  相似文献   

18.
19.
Chun-Mei Li 《中国物理 B》2022,31(5):56105-056105
The alloying and magnetic disordering effects on site occupation, elastic property, and phase stability of Co$_{2}Y$Ga ($Y={rm Cr}$, V, and Ni) shape memory alloys are systematically investigated using the first-principles exact muffin-tin orbitals method. It is shown that with the increasing magnetic disordering degree $y$, their tetragonal shear elastic constant $C'$ (i.e., $(C_{11}-C_{12})/2$) of the $L2_{1}$ phase decreases whereas the elastic anisotropy $A$ increases, and upon tetragonal distortions the cubic phase gets more and more unstable. Co$_{2}$CrGa and Co$_{2}$VGa alloys with $ygeq0.2$ thus can show the martensitic transformation (MT) from $L2_{1}$ to $D0_{22}$ as well as Co$_{2}$NiGa. In off-stoichiometric alloys, the site preference is controlled by both the alloying and magnetic effects. At the ferromagnetism state, the excessive Ga atoms always tend to take the $Y$ sublattices, whereas the excessive Co atom favor the $Y$ sites when $Y={rm Cr}$, and the excessive $Y$ atoms prefer the Co sites when $Y={rm Ni}$. The Ga-deficient $Y={rm V}$ alloys can also occur the MT at the ferromagnetism state by means of Co or V doping, and the MT temperature $T_{rm M}$ should increase with their addition. In the corresponding ferromagnetism $Y={rm Cr}$ alloys, nevertheless, with Co or Cr substituting for Ga, the reentrant MT (RMT) from $D0_{22}$ to $L2_{1}$ is promoted and then $T_{rm M}$ for the RMT should decrease. The alloying effect on the MT of these alloys is finally well explained by means of the Jahn-Teller effect at the paramagnetic state. At the ferromagnetism state, it may originate from the competition between the austenite and martensite about their strength of the covalent banding between Co and Ga as well as $Y$ and Ga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号