首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
<正>Graphene films are deposited on copper(Cu) and aluminum(Al) substrates,respectively,by using a microwave plasma chemical vapour deposition technique.Furthermore,these graphene films are characterized by a field emission type scanning electron microscope(FE-SEM),Raman spectra,and field emission(FE) I-V measurements.It is found that the surface morphologies of the films deposited on Cu and Al substrates are different:the field emission property of graphene film deposited on the Cu substrate is better than that on the Al substrate,and the lowest turn-on field of 2.4 V/μm is obtained for graphene film deposited on the Cu substrate.The macroscopic areas of the graphene samples are all above 400 mm~2.  相似文献   

2.
李佳  王丽  冯志红  蔚翠  刘庆彬  敦少博  蔡树军 《中国物理 B》2012,21(9):97304-097304
Graphene with different surface morphologies were fabricated on 8° -off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8° -off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for the different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with an increasing terrace width on Siterminated on-axis SiC. Interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm 2 /V·s at a carrier density of 9.8.×10 12 cm 2 . Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.  相似文献   

3.
Defects in silicon carbide(SiC) substrate are crucial to the properties of the epitaxial graphene(EG) grown on it. Here we report the effect of defects in SiC on the crystalline quality of EGs through comparative studies of the characteristics of the EGs grown on SiC(0001) substrates with different defect densities. It is found that EGs on high quality SiC possess regular steps on the surface of the SiC and there is no discernible D peak in its Raman spectrum. Conversely, the EG on the SiC with a high density of defects has a strong D peak, irregular stepped morphology and poor uniformity in graphene layer numbers. It is the defects in the SiC that are responsible for the irregular stepped morphology and lead to the small domain size in the EG.  相似文献   

4.
不同基底的GaN纳米薄膜制备及其场发射增强研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈程程  刘立英  王如志  宋雪梅  王波  严辉 《物理学报》2013,62(17):177701-177701
采用脉冲激光沉积 (PLD) 方法在Si及SiC基底上制备了相同厚度的GaN纳米薄膜并对其进行了微结构表征及场发射性能测试分析. 结果表明: 基底对于GaN薄膜微结构及场发射性能具有显著的影响. 在SiC基底上所制备的GaN纳米薄膜相对于Si基底上的GaN纳米薄膜, 其场发射性能得到显著提升, 其场发射电流可以数量级增大. 场发射显著增强应源于纳米晶微结构及取向极化诱导增强效应. 本研究结果表明, 要获得优异性能场发射薄膜, 合适基底及薄膜晶体微结构需要重点考虑. 关键词: 基底 GaN 纳米薄膜 场发射  相似文献   

5.
Patterned gallium nitride nanowires and nanodots have been grown on n-Si (100) substrates by pulsed laser deposition. The nanostructures are patterned using a physical mask, resulting in regions of nanowire growth of different densities. The field emission (FE) characteristics of the patterned gallium nitride nanowires show a turn-on field of 9.06 V/μm to achieve a current density of 0.01 mA/cm2 and an enhanced field emission current density as high as 0.156 mA/cm2 at an applied field of 11 V/μm. Comparing the peak FE current densities of both the nanowires and nanodots, the peak FE current density of nanowires is around 700 times higher than that of the peak FE current density of nanodots since nanodots have a lower aspect ratio compared to nanowires. The field emission results indicate that, besides density difference, crystalline quality as well as the low electron affinity of gallium nitride, high aspect ratio of gallium nitride nanostructures will greatly enhance their field emission properties.  相似文献   

6.
Carbon nanotubes (CNTs) arrays grown by microwave plasma enhanced chemical vapor deposition (MPCVD) method was transferred onto the substrate covered with graphene layer obtained by thermal chemical vapor deposition (CVD) technology. The graphene buffer layer provides good electrical and thermal contact to the CNTs. The field emission characteristics of this hybrid structure were investigated in this study. Compared with the CNTs arrays directly grown on the silicon substrate, the hybrid emitter shows better field emission performance, such as high emission current and long-term emission stability. The presence of this graphene layer was shown to improve the field emission behavior of CNTs. This work provides an effective way to realize stable field emission from CNTs emitter and similar hybrid structures.  相似文献   

7.
The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and quartz, for the growth of ZnO nanowires with the uniformly small diameter. Scanning electron microscopy (SEM) reveals that different nanostructures including nanobelts, nanowires and microplates have been synthesized depending on types of substrates and gas flow. Observation by transmission electron microscopy (TEM) reveals that the nanostructures are grown by VLS mechanism. The field emission properties of ZnO nanowires grown on the Si(1 0 0) substrate, in various vacuum gaps, were characterized in a UHV chamber at room temperature. Field emission (FE) characterization shows that the turn-on field and the field enhancement factor (β) decrease and increases, respectively, when the vacuum gap (d) increase from 100 to 300 μm. The turn-on emission field and the enhancement factor of ZnO nanowires are found 10 V/μm and 1183 at the vacuum gap of 300 μm.  相似文献   

8.
In this paper,the epitaxial graphene layers grown on Si-and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 C.By using atomic force microscopy and Raman spectroscopy,we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates,including the hydrogen etching process,the stacking type,and the number of layers.Hopefully,our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.  相似文献   

9.
In this paper, the epitaxial graphene layers grown on Si- and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 ℃. By using atomic force microscopy and Raman spectroscopy, we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates, including the hydrogen etching process, the stacking type, and the number of layers. Hopefully, our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.  相似文献   

10.
Sublimated graphene grown on SiC is an attractive material for scientific investigations. Nevertheless the self limiting process on the Si face and its sensitivity to the surface quality of the SiC substrates may be unfavourable for later microelectronic processes. On the other hand, chemical vapor deposited (CVD) graphene does not posses such disadvantages, so further experimental investigation is needed. In this paper CVD grown graphene on 6H-SiC (0 0 0 1) substrate was investigated using scanning probe microscopy (SPM). Electrical properties of graphene were characterized with the use of: scanning tunnelling microscopy, conductive atomic force microscopy (C-AFM) with locally performed C-AFM current–voltage measurements and Kelvin probe force microscopy (KPFM). Based on the contact potential difference data from the KPFM measurements, the work function of graphene was estimated. We observed conductance variations not only on structural edges, existing surface corrugations or accidental bilayers, but also on a flat graphene surface.  相似文献   

11.
Journal of Experimental and Theoretical Physics - The influence of manganese atom intercalation on the electronic structure of graphene grown on Au/Co(0001)/W(110) and SiC(0001) substrates is...  相似文献   

12.
The properties of carbon nanotube (CNT) field emission cathodes fabricated by a dip coating method with trivalent chromium conversion coated substrates are studied. Two kinds of substrates with different morphologies, one with a rough crackled surface and the other with a smooth surface, were used for making the CNT cathodes, and their I-V curves and emission patterns were evaluated. The results show that, as compared to the smooth substrate surface, the rough surface with self-assembled sub-micro-cracks on the substrate can dramatically enhance the uniformity of the emission pattern and the emission efficiency. The cathode fabricated with the crackled substrate shows good field emission properties such as high brightness, good uniformity, a low turn-on field (0.86 V/μm) and a high current density of 10 mA/cm2 at 2.5 V/μm.  相似文献   

13.
杨慧慧  高峰  戴明金  胡平安 《物理学报》2017,66(21):216804-216804
作为21世纪备受瞩目的材料,石墨烯兼具优异的电、热、光与力学性质,具有十分广阔的研究价值与应用价值.目前主要通过在金属基底上生长获得石墨烯,并将其转移至目标介电层基底上以构筑电子器件.转移过程不可避免地引入了褶皱、裂纹、破损以及聚合物/金属残留,严重损害了石墨烯的性能.因而直接在介电基底上制备高质量的石墨烯薄膜具有重要意义.本文总结了近年来在介电衬底上直接生长石墨烯的研究进展:阐述了金属辅助法、等离子体增强法以及热力学或动力学调控法等多种生长手段;介绍了多种介电/绝缘基底包括SiO_2/Si,Al_2O_3,SrTiO_3,h-BN,SiC,Si_3N_4以及玻璃表面生长石墨烯的特点与性能,分析了其可能的生长机理.根据拉曼谱图、薄层电阻、透光率、载流子迁移率等评估指标,将多种方法得到的石墨烯质量进行了总结与比较,并提出了直接在介电衬底上生成石墨烯的研究难点与趋势.  相似文献   

14.
ZnO micro-prisms are prepared on the p-type and n-type Si substrates, separately. The $I$--$V$ curves analysed by AFM show that the interface junctions between the ZnO micro-prisms and the p-type substrate and between the ZnO micro-prisms and the n-type Si substrate exhibit p--n junction behaviour and ohmic contact behaviour, respectively. The formation of the p--n heterojunction and ohmic contact is ascribed to the intrinsic n-type conduction of ZnO material. Better field emission performance (lower onset voltage and larger emission current) is observed from an individual ZnO micro-prism grown on the n-type Si substrate. It is suggested that the n-Si/n-ZnO interfacial ohmic contact benefits the electron emission; while the p-Si/n-ZnO interface heterojunction deteriorates the electron emission.  相似文献   

15.
Using novel ideas for the fabrication of epitaxial graphene(EG)on SiC,two forms of graphene termed as vertical aligned graphene sheets(VAGS)and graphene covered SiC powder(GCSP)were derived,respectively,from SiC slices and SiC powder,aimed for applications in energy storage and photocatalysis.Herein,the fabrication procedures,morphology characteristics,some intrinsic physical properties and performances for applications in field effect transistor(FET)and cold cathode field emission source are revealed and analyzed based on the graphene materials.The EG on a 2-inch SiC(0001)showed an average sheet resistance about 720/with a non-uniformity 7.2%.The FETs fabricated on the EG possessed a cutoff frequency 80GHz.Based on the VAGS derived from a completely carbonized SiC slice,a magnetic phase diagram of graphene with irregular zigzag edges is also reported.  相似文献   

16.
The proposed scheme for the consideration of charge transfer in the three-layer Gr/Me/SiC system (where Gr is a single-sheet graphene, Me is an intercalated metal layer, and SiC is a substrate) contains three stages. At the first stage, a metal monolayer adsorbed on silicon carbide is considered and the charge of adatoms in this monolayer is calculated. At the second stage, the shift of the Dirac point of free-standing single-layer graphene in an electrostatic field induced by charged adatoms of the monolayer is estimated. At the third stage, a weak interaction between Me/SiC and free-standing graphene is included, which allows electrons to tunnel but does not significantly distort the density of states of free-standing graphene. Estimations are performed for n- and p-type 6H-SiC(0001) substrates and Cu, Ag, and Au layers. The charge state of the graphene sheet and the shift of the Dirac point with respect to the Fermi level of the system are calculated. A comparison with the available experimental and theoretical results shows that the proposed scheme works quite satisfactorily.  相似文献   

17.
In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400, and 1500 ℃ in a commercial chemical vapour deposition SiC reactor. Using Raman spectroscopy and scanning electron microscopy, we confirm that epitaxial graphene evidently forms on SiC surface above 1300 ℃ with a size of several microns. By fitting the 2D band of Raman data with two-Lorentzian function, and comparing with the published reports, we conclude that epitaxial graphene grown at 1300 ℃ is four-layer graphene.  相似文献   

18.
Direct growth of graphene on Co(3)O(4)(111) at 1000 K was achieved by molecular beam epitaxy from a graphite source. Auger spectroscopy shows a characteristic sp(2) carbon lineshape, at average carbon coverages from 0.4 to 3 ML. Low energy electron diffraction (LEED) indicates (111) ordering of the sp(2) carbon film with a lattice constant of 2.5(±0.1) ? characteristic of graphene. Sixfold symmetry of the graphene diffraction spots is observed at 0.4, 1 and 3 ML. The LEED data also indicate an average domain size of ~1800 ?, and show an incommensurate interface with the Co(3)O(4)(111) substrate, where the latter exhibits a lattice constant of 2.8(±0.1) ?. Core level photoemission shows a characteristically asymmetric C(1s) feature, with the expected π to π* satellite feature, but with a binding energy for the 3 ML film of 284.9(±0.1) eV, indicative of substantial graphene-to-oxide charge transfer. Spectroscopic ellipsometry data demonstrate broad similarity with graphene samples physically transferred to SiO(2) or grown on SiC substrates, but with the π to π* absorption blue-shifted, consistent with charge transfer to the substrate. The ability to grow graphene directly on magnetically and electrically polarizable substrates opens new opportunities for industrial scale development of charge- and spin-based devices.  相似文献   

19.
We have investigated transport characteristics of epitaxial graphene grown on semi-insulating silicon-face 4H-silicon carbide (SiC) substrate by thermal decomposition method in relatively high N2 pressure atmosphere. We have succeeded in forming 1–2 layers of graphene on SiC in controlled manner. The surface morphology of formed graphene was analyzed by atomic force microscopy (AFM), low-energy electron diffraction (LEED) and low-energy electron microscope (LEEM). We have confirmed single-layer graphene growth in average by this method. Top-gated, single-layer graphene field-effect transistors (FETs) were fabricated on epitaxial graphene grown on 4H-SiC. Increased on/off ratio of nearly 100 at low temperature and extremely small minimum conductance (0.018–0.3 in 4 e2/h) in gated Hall-bar samples suggest possible band-gap opening of single-layer epitaxial graphene grown on Si-face SiC.  相似文献   

20.
Using classical molecular dynamics and a simulated annealing technique,we show that microscopic corrugations occur in monolayer and bilayer graphene on 6H-SiC substrates.From an analysis of the atomic configurations,two types of microscopic corrugations are identified,namely periodic ripples at room temperature and random ripples at high temperature.Two different kinds of ripple morphologies,each with a periodic structure,occur in the monolayer graphene due to the existence of a coincidence lattice between graphene and the SiC terminated surface(Si-or C-terminated surface).The effect of temperature on microscopic ripple morphology is shown through analysing the roughness of the graphene.A temperature-dependent multiple bonding conjugation is also shown by the broad distribution of the carbon-carbon bond length and the bond angle in the rippled graphene on the SiC surface.These results provide atomic-level information about the rippled graphene layers on the two polar faces of the 6H-SiC substrate,which is useful not only for a better understanding of the stability and structural properties of graphene,but also for the study of the electronic properties of graphene-based devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号