首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We produced epitaxial graphene under a moderate pressure of 4 mbar(about 400 Pa) at temperature 1600℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC(0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail.  相似文献   

2.
In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400, and 1500 ℃ in a commercial chemical vapour deposition SiC reactor. Using Raman spectroscopy and scanning electron microscopy, we confirm that epitaxial graphene evidently forms on SiC surface above 1300 ℃ with a size of several microns. By fitting the 2D band of Raman data with two-Lorentzian function, and comparing with the published reports, we conclude that epitaxial graphene grown at 1300 ℃ is four-layer graphene.  相似文献   

3.
周海涛  喻宁  邹飞  姚朝晖  高歌  申承民 《中国物理 B》2016,25(9):96106-096106
Vertically standing graphene(VSG) sheets have been fabricated by using plasma enhanced chemical vapor deposition(PECVD) method.The lateral size of VSG nanosheets could be well controlled by varying the substrate temperature.The higher temperature usually gives rise to a smaller sheet size.The wettability of VSG films was tuned between hydrophobicity and hydrophilicity by means of oxygen and hydrogen plasma treatment.The supercapacitor electrode made of VSG sheets exhibited an ideal double-layer-capacitor feature and the specific capacitance reached a value up to 9.62 F·m~(-2).  相似文献   

4.
The controllable growth of three different morphologies of AlN nanostructures (nanorod, nanotip and nanocrater) arrays are successfully realized by using chemical vapour deposition (CVD) technology. All three nanostructures are of single crystal h-AlN with a growth orientation of [001]. Their growth is attributed to the vapour-liquid-solid (VLS) mechanism. To investigate the factors affecting field emission (FE) properties of AlN nanostructures, we compare their FE behaviours in several aspects. Experimental results show that AlN nanocrater arrays possess the best FE properties, such as a threshold field of 7.2~V/μm and an emission current fluctuation lower than 4%. Moreover, the three AlN nanostructures all have good field emission properties compared with a number of other excellent cathode nanomaterials, which suggests that they are future promising FE nanomaterials.  相似文献   

5.
不同基底的GaN纳米薄膜制备及其场发射增强研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈程程  刘立英  王如志  宋雪梅  王波  严辉 《物理学报》2013,62(17):177701-177701
采用脉冲激光沉积 (PLD) 方法在Si及SiC基底上制备了相同厚度的GaN纳米薄膜并对其进行了微结构表征及场发射性能测试分析. 结果表明: 基底对于GaN薄膜微结构及场发射性能具有显著的影响. 在SiC基底上所制备的GaN纳米薄膜相对于Si基底上的GaN纳米薄膜, 其场发射性能得到显著提升, 其场发射电流可以数量级增大. 场发射显著增强应源于纳米晶微结构及取向极化诱导增强效应. 本研究结果表明, 要获得优异性能场发射薄膜, 合适基底及薄膜晶体微结构需要重点考虑. 关键词: 基底 GaN 纳米薄膜 场发射  相似文献   

6.
A method for growing graphene on a sapphire substrate by depositing an SiC buffer layer and then annealing at high temperature in solid source molecular beam epitaxy (SSMBE) equipment was presented. The structural and electronic properties of the samples were characterized by reflection high energy diffraction (RHEED), X-ray diffraction Φ scans, Raman spectroscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The results of the RHEED and Φ scan, as well as the Raman spectra, showed that an epitaxial hexagonal α-SiC layer was grown on the sapphire substrate. The results of the Raman and NEXAFS spectra revealed that the graphene films with the AB Bernal stacking structure were formed on the sapphire substrate after annealing. The layer number of the graphene was between four and five, and the thickness of the unreacted SiC layer was about 1--1.5 nm.  相似文献   

7.
<正>Graphene films are deposited on copper(Cu) and aluminum(Al) substrates,respectively,by using a microwave plasma chemical vapour deposition technique.Furthermore,these graphene films are characterized by a field emission type scanning electron microscope(FE-SEM),Raman spectra,and field emission(FE) I-V measurements.It is found that the surface morphologies of the films deposited on Cu and Al substrates are different:the field emission property of graphene film deposited on the Cu substrate is better than that on the Al substrate,and the lowest turn-on field of 2.4 V/μm is obtained for graphene film deposited on the Cu substrate.The macroscopic areas of the graphene samples are all above 400 mm~2.  相似文献   

8.
In this paper, the epitaxial graphene layers grown on Si- and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 ℃. By using atomic force microscopy and Raman spectroscopy, we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates, including the hydrogen etching process, the stacking type, and the number of layers. Hopefully, our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.  相似文献   

9.
李镇江*  李伟东 《物理学报》2013,62(9):97902-097902
本文利用化学气相反应(CVR)法, 系统研究了不同温度对Ce掺杂的SiC纳米线及其场发射性能的影响规律. 利用扫描电镜(SEM)、透射电镜(TEM)、选区电子衍射(SAED)、X射线衍射(XRD)对所得产物进行了表征, 并对其场发射性能进行了测试. 结果表明: 所得产物为具有立方结构的β-SiC晶体, 随着温度的升高, 纳米线逐渐变的弯曲, Ce的含量降低, 产物的开启电场和阈值电场先升高后降低. 当合成温度为1250 ℃, Ce的含量为0.27 at%, 产物的场发射性能最佳,开启电场和阈值电场分别为2.5 V/μm和5.2 V/μm. 关键词: 合成温度 SiC纳米线 场发射性能  相似文献   

10.
王翀  王菲菲  付星球  王太宏 《中国物理》2007,16(11):3545-3548
ZnO sheet array was fabricated by a simple electrodeposition method on the transparent ITO substrate at a temperature of about 60℃. The field emission properties of the ZnO sheet array were investigated. The fluctuation of the field emission current is less than 5% over several hours. The Fowler Nordheim curves with a roughly linear characteristic were obtained by analysing the current density and the intensity of the electrical field. The results prove that such a simple electrochemical method can potentially meet the demands on the production of cold cathodes for field emission display.[第一段]  相似文献   

11.
谷季唯  王锦程  王志军  李俊杰  郭灿  唐赛 《物理学报》2017,66(21):216101-216101
利用可描述气-固转变的三模晶体相场模型,在原子尺度上研究了不同衬底条件下石墨烯结构的形核过程.结果表明:无论衬底存在与否,气态原子均是先聚集为无定形过渡态团簇,随着气态原子的不断堆积和固相团簇中原子位置的不断调整,过渡态团簇逐渐转变为有序的石墨烯晶核,在此过程中,五元环结构具有重要的过渡作用;石墨烯在结构匹配较好的衬底(如面心立方(face-centered cubic,FCC)结构(111)和(110))上生长时,可形成几乎没有结构缺陷单晶石墨烯岛;在无衬底或结构匹配性较差的衬底(如FCC结构(100)面)上生长时,形成的石墨烯岛结构缺陷和晶界较多,不利于高质量石墨烯的制备.  相似文献   

12.
A simple approach is demonstrated for effectively growing large-area vertically aligned carbon hexagonal nanoprism arrays on molybdenum substrates by the catalyst-assisted pulsed laser deposition techniques. The carbon hexagonal nanoprisms have uniform shape and length, almost aligned vertically on the substrate, and the average diameters are about 30 nm. The internal angles of the nanoprisms present 60°. The vertically aligned nanorods have also been obtained for a comparison in the presence of catalyst Fe. The sample with vertically aligned carbon hexagonal nanoprism arrays exhibits better field emission behaviors than that with aligned carbon nanorod arrays.  相似文献   

13.
A green, convenient, and inexpensive approach to producing graphene field emitters has been developed. Graphite oxide (GO) produced by hummer method was reduced to graphene in a microwave synthesis system. The vacuum filtration method made it possible to form pure and uniform graphene thin films without any additives and it's easy to transfer to other substrates. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectroscopy (UV-vis) measurements proved that the graphene prepared by microwave has nearly the same reduction level as that prepared by hydrazine. The results of field emission testing demonstrated that graphene films reduced by microwave are more suitable as field emitters than those reduced by hydrazine, which pave a way to mass-produce low-cost graphene emitter for field emission applications.  相似文献   

14.
We have estimated the threading dislocation density and type via X-ray diffraction and Williamson-Hall analysis to elicit qualitative information directly related to the electrical and optical quality of GaN epitaxial layers grown by PAMBE on 4H- and 6H-SiC substrates. The substrate surface preparation and buffer choice, specifically: Ga flashing for SiC oxide removal, controlled nitridation of SiC, and use of AlN buffer layers all impact the resultant screw dislocation density, but do not significantly influence the edge dislocation density. We show that modification of the substrate surface strongly affects the screw dislocation density, presumably due to impact on nucleation during the initial stages of heteroepitaxy.  相似文献   

15.
In this paper,the epitaxial graphene layers grown on Si-and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 C.By using atomic force microscopy and Raman spectroscopy,we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates,including the hydrogen etching process,the stacking type,and the number of layers.Hopefully,our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.  相似文献   

16.
Reduced graphene oxide(RGO) has the advantage of an aqueous and industrial-scale production route. No other approaches can rival the RGO field effect transistor platform in terms of cost(相似文献   

17.
周攀  何大伟 《中国物理 B》2016,25(1):17302-017302
On the basis of first principles calculations, we report that the type and density of charge carriers of epitaxial graphene on Si C(0001) can be deliberately controlled by decorating the buffer layer with specific atoms(i.e., F, Cl, O, or N). More importantly, a fine tuning of the doping behavior from intrinsic n-type to charge neutrality to p-type and interface magnetism is achieved via increasing the doping concentration of F atoms on the buffer layer. Our results suggest an interesting avenue to the application of epitaxial graphene in nanoscale electronic and spintronic devices.  相似文献   

18.
A multistage numerical model comprising the plasma kinetics and surface deposition sub-models is developed to study the influence of process parameters, namely, total gas pressure and input plasma power on the plasma chemistry and growth characteristics of vertically oriented graphene sheets (VOGS) grown in the plasma-enhanced chemical vapour deposition system containing the Ar + H2 + C2H2 reactive gas mixture. The spectral and spatial distributions of temperature and number densities, respectively, of plasma species, that is, charged and neutral species in the plasma reactor, are examined using inductively coupled plasma module of COMSOL Multiphysics 5.2 modelling suite. The numerical data from the computational plasma model are fed as the input parameters for the surface deposition model, and from the simulation results, it is found that there is a significant drop in the densities of various plasma species as one goes from the bulk plasma region to the substrate surface. The significant loss of the energetic electrons is observed in the plasma region at high pressure (for constant input power) and low input power (for constant gas pressure). At low pressure, the carbon species generate at higher rates on the catalyst nanoislands surface, thus enhancing the growth and surface density of VOGS. However, it is found that VOGS growth rate increases when input plasma power is raised from 100 to 300 W and decreases with further increase in the plasma power. A good comparison of the model outcomes with the available experimental results confirms the adequacy of the present model.  相似文献   

19.
Electron field emission properties of vertically aligned Si nanowires, synthesized by chemically etching p-type Si wafers with different etching times were investigated in detail. Fabrication of Si nanowires was confirmed by field emission scanning electron microscopic investigation. It was observed that a thin layer of amorphous carbon coating over the grown Si nanowires enhanced the field emission properties significantly.  相似文献   

20.
Thermionic emission from vertically grown carbon nanotubes (CNTs) by water-assisted chemical vapor deposition (WA-CVD) is investigated. I-V characteristics of WA-CNT samples exhibit strong Schottky effect leading to field proportionality factor β ∼ 104 cm−1in contrast to β ∼ 200 cm−1 for the bare tungsten substrate. Non-contact atomic force microscopy imaging of CNT samples show propensity of nanoasperities over a scale of micron size over which the tungsten surface is seen to be atomically smooth. The values of root mean-square roughness for CNTs and W were found to be 24.2 nm and 0.44 nm respectively. The Richardson-Dushman plots yield work function values of ΦCNT ? 4.5 and ΦW ? 4.3 eV. Current versus time data shows that CNT cathodes are fifteen times noisier than tungsten cathode presumably due to increased importance of individual atomic events on the sharp CNT tips of bristle like structures. Power spectral density of current exhibited 1/fξ behavior with ξ ? 1.5, and 2 for W and CNTs. The former suggests surface diffusion whereas the latter indicates adsorption/desorption of atomic/molecular species as a dominant mechanism of noise generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号