首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A family of [Pt(II)(diimine)(dithiolate)] complexes of general formula [Pt{X,X'(CO(2)R)(2)-2,2'-bipyridyl}(maleonitriledithiolate)] (where X = 3, 4, or 5 and R = H or Et) have been synthesized, spectroscopically and electrochemically characterized, and attached to a TiO(2) substrate to be tested as solar cell sensitizers. A single-crystal X-ray structure showing a large torsion angle between the bipyridyl rings was determined for [Pt{3,3'(CO(2)Et)(2)-2,2'-bipyridyl}(maleonitriledithiolate)].MeCN. The effect of changing the position of the bipyridyl substituents from 3,3' to 4,4' and 5,5' is discussed with reference to structural and electronic changes seen within the different members of the family of molecules. The first UV/vis/NIR spectroelectrochemical study of complexes of this general formula is discussed. All three complexes (where R = H) were tested as solar cell sensitizers, with the 3,3'-disubstituted bipyridyl complex giving an intermediate dye loading value but superior photovoltaic performance to those of the other two. The performance of this sensitizer is then compared with that of a well-known Ru polypyridyl sensitizer, the ditetrabutylammonium salt of [RuL(2)(NCS)(2)] (L = 2,2'-bipyridyl-4,4'-dicarboxylato), commonly called N719.  相似文献   

2.
The n-alkyl halides, RX, were oxidatively added to the platina(II)cyclopentane complexes [Pt[(CH2)4](NN)], in which NN = bpy (2,2'-bipyridyl) or phen (1,10-phenanthroline), to give the platinum(IV) complexes [PtRX[(CH2)4](NN)], R = Et and X = Br or I; R = nBu and X = I, 1-3. The same reactions with the analogous dimethyl complex [PtMe2(bpy)] gave the expected platinum(IV) complexes [PtRXMe2(bpy)], R = Et or nPr and X = Br or I; R = nBu and X = I, 4-8. Kinetics of the reactions in benzene and acetone was studied using UV-vis spectrophotometery and a common S(N)2 mechanism was suggested for each case. The platina(ii)cyclopentane complexes reacted faster than the corresponding dimethyl analogs by a factor of 2-3. This is described as being due to a lower positive charge, calculated by density functional theory (DFT), on the platinum atom of [Pt[(CH)2)4](bpy)] compared with that on the platinum atom of the dimethyl analog [PtMe2(bpy)]. The values of DeltaDeltaS(double dagger) = DeltaS(double dagger)(acetone) - DeltaS(double dagger)(benzene) were found to be either positive or negative in different reactions and this is related to the solvation of the corresponding alkyl halide. It is suggested that in these reactions of RX reagents, for a given X, the electronic effects of the R group are mainly responsible for the change in the rates of the reactions and the bulkiness of the group is far less important.  相似文献   

3.
Photochemical ligand substitution of fac-[Re(X2bpy)(CO)3(PR3)]+ (X2bpy = 4,4'-X2-2,2'-bipyridine; X = Me, H, CF3; R = OEt, Ph) with acetonitrile quantitatively gave a new class of biscarbonyl complexes, cis,trans[Re(X2bpy)(CO)2(PR3)(MeCN)]+, coordinated with four different kinds of ligands. Similarly, other biscarbonylrhenium complexes, cis,trans-[Re(X2bpy)(CO)2(PR3)(Y)]n+ (n = 0, Y = Cl-; n = 1, Y = pyridine, PR'3), were synthesized in good yields via photochemical ligand substitution reactions. The structure of cis,trans-[Re(Me2bpy)(CO)2[P(OEt)3](PPh3)](PF6) was determined by X-ray analysis. Crystal data: C38H42N2O5F6P3Re, monoclinic, P2(1/a), a = 11.592(1) A, b = 30.953(4) A, c = 11.799(2) A, V = 4221.6(1) A3, Z = 4, 7813 reflections, R = 0.066. The biscarbonyl complexes with two phosphorus ligands were strongly emissive from their 3MLCT state with lifetimes of 20-640 ns in fluid solutions at room temperature. Only weak or no emission was observed in the cases Y = Cl-, MeCN, and pyridine. Electrochemical reduction of the biscarbonyl complexes with Y = Cl- and pyridine in MeCN resulted in efficient ligand substitution to give the solvento complexes cis,trans-[Re(X2bpy)(CO)2(PR3)(MeCN)]+.  相似文献   

4.
A novel synthesis method is introduced for the preparation of [Os(NN)(CO)(2)X(2)] complexes (X = Cl, Br, I, and NN = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy)). In the first step of this two-step synthesis, OsCl(3) is reduced in the presence of a sacrificial metal surface in an alcohol solution. The reduction reaction produces a mixture of trinuclear mixed metal complexes, which after the addition of bpy or dmbpy produce a trans(Cl)-[Os(NN)(CO)(2)Cl(2)] complex with a good 60-70% yield. The halide exchange of [Os(bpy)(CO)(2)Cl(2)] has been performed in a concentrated halidic acid (HI or HBr) solution in an autoclave, producing 30-50% of the corresponding complex. All of the synthesized trans(X)-[Os(bpy)(CO)(2)X(2)] (X = Cl, Br, I) complexes displayed a similar basic electrochemical behavior to that found in the ruthenium analog trans(Cl)-[Ru(bpy)(CO)(2)Cl(2)] studied previously, including the formation of an electroactive polymer [Os(bpy)(CO)(2)](n) during the two-electron electrochemical reduction. The absorption and emission properties of the osmium complexes were also studied. Compared to the ruthenium analogues, these osmium complexes display pronounced photoluminescence properties. The DFT calculations were made in order to determine the HOMO-LUMO gaps and to analyze the contribution of the individual osmium d-orbitals and halogen p-orbitals to the frontier orbitals of the molecules. The electrochemical and photochemical induced substitution reactions of carbonyl with the solvent molecule are also discussed.  相似文献   

5.
The synthesis and characterization of [Pt{4'-(R)trpy}(CN)]X (R = Ph, X = BF(4) or SbF(6); R = o-CH(3)C(6)H(4), X = SbF(6); R = o-ClC(6)H(4), X = SbF(6); or R = o-CF(3)C(6)H(4), X = SbF(6)) are described where trpy = 2,2':6',2'-terpyridine. Single crystals of [Pt{4'-(Ph)trpy}(CN)]BF(4).CH(3)CN were grown by vapour diffusion of diethyl ether into an acetonitrile solution of [Pt{4'-(Ph)trpy}(CN)]BF(4). An X-ray crystal structure determination of the solvated complex confirms the near linear coordination of the cyanide ligand to the platinum centre. The cation is almost planar as evidenced by a twist of only 1.9 degrees of the phenyl group out of the plane of the terpyridyl moiety. Cyclic voltammograms were recorded in DMF/0.1 M TBAH for the [Pt{4'-(R)trpy}(CN)](+) cations. Two quasi-reversible one-electron reduction (cathodic) waves are observed with E(1/2) values that show the trend expected for an increasingly lower energy of the trpy-based LUMO of the complex i.e., [Pt{4'-(Ph)trpy}(CN)](+) approximately [Pt{4'-(o-CH(3)C(6)H(4))trpy}(CN)](+) < [Pt{4'-(o-ClC(6)H(4))trpy}(CN)](+) < [Pt{4'-(o-CF(3)C(6)H(4))trpy}(CN)](+). All the [Pt(4'-(R)trpy}(CN)](+) cations are photoluminescent in dichloromethane. Emission by [Pt{4'-(Ph)trpy}(CN)](+) is from an excited state with largely (3)MLCT orbital parentage, but with some intraligand (3)pi-pi* character mixed-in (tau = 0.1 micros). In contrast, the other three cations display emission that appears exclusively intraligand (3)pi-pi* in origin (tau approximately 0.8 micros). Emission spectra have been recorded in a low concentration frozen DME {1 : 5 : 5 (v/v) DMF-MeOH-EtOH} glass. For the R = o-CH(3)C(6)H(4), o-ClC(6)H(4) and o-CF(3)C(6)H(4) cations the envelope of vibronic structure and energies of the vibrational components are essentially the same as that recorded in dichloromethane. However, for the [Pt{4'-(Ph)trpy}(CN)](+) cation, there is a blue-shift in the energies of the vibrational components as compared to that recorded in dichloromethane, as well as a change in the envelope of vibronic structure to a more "domed" pattern; this has been interpreted in terms of a higher percentage of intraligand (3)pi-pi* character in the emitting state for the glass. Increasing the concentration of the glass invariably leads to aggregation of the cations and the consequent development of new low energy bands, such that at 0.200 mM broad peaks centred at ca. 650 and 700 nm dominate the spectrum; these bands are assigned to excimeric (3)pi-pi* and (3)MMLCT emission, respectively.  相似文献   

6.
Mixed Ligand Complex Formation by Thermal Reactions of Metal(II) Thioselenocarbamate Chelates. EPR and Mass Spectrometric Investigations At higher temperatures metal(II) thioselenocarbamates M(R2tsc)2 (M = Cu, Ni, Pd, Pt) react to form M(R2tsc)(R2dsc) and M(R2tsc)(R2dtc) (dtc = dithiocarbamate, dsc = diselenocarbamate) mixed-ligand chelates. If CuII species are participated the mixed-ligand complex formation can be the followed by EPR spectroscopy. The reaction is irreversible, and the rate depends on the temperature, the substituent R, and the solvent used. The complexes M(Et2tsc)(Et2dsc) and M(Et2tsc)(Et2dtc) formed during the thermal reaction of M(Et2tsc)2 chelates (M = Ni, Pd, Pt) can be detected by EPR spectroscopy using the ligand-exchange reaction with [Cu(mnt)2]2?(mnt = maleonitriledithiolate). As results the spectra of [Cu(mnt)(Et2tsc)]?, [Cu(mnt)(Et2dsc)]? and [Cu(mnt)(Et2dtc)]? are observed.  相似文献   

7.
Ji Y  Zhang R  Li YJ  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2007,46(3):866-873
A series of new platinum(II) complexes containing both 4,4'-di-tert-butyl-2,2'-bipyridine (dbbpy) and the extended tetrathiafulvalenedithiolate ligands have been prepared and characterized. These complexes include [Pt(dbbpy)(C8H4S8)] (1; C8H4S82- = 2-{(4,5-ethylenedithio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(ptdt)] (2; ptdt = 2-{(4,5-cyclopentodithio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(mtdt)] (3; mtdt = 2-{(4,5-methylethylenedithio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(btdt)] (4; btdt = benzotetrathiafulvalenedithiolate), [Pt(dbbpy)(C8H6S8)] (5; C8H6S82- = 2-{4,5-bis(methylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(3O-C6S8)] (6; 3O-C6S82- = 2-{4,5-dithia-(3',6',9'-trioxaundecyl)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), and [Pt(dbbpy)(4O-C6S8)] (7; 4O-C6S82- = 2-{4,5-dithia-(3',6',9',12'-tetraoxatetradecyl)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate). The crystal structures of a new ligand precursor (2-[4,5-dithia-(3',6',9',12'-tetraoxatetradecyl)-1,3-dithiol-2-ylidene]-4,5-bis(2-cyanoethylsulfanyl)-1,3-dithiole, IIIc) and complexes 5-7 have been determined by X-ray crystallography. Complexes 1-7 show intense electronic absorption bands in the UV-vis region due to the intramolecular mixed metal/ligand-to-ligand charge-transfer transition, and they display significant solvatochromic behavior. Redox properties of these compounds have been investigated by cyclic voltammetry, and complex 7 shows a significant response for Na+ ions with a large positive shift of ca. 45 mV.  相似文献   

8.
Yu SY  Huang HP  Li SH  Jiao Q  Li YZ  Wu B  Sei Y  Yamaguchi K  Pan YJ  Ma HW 《Inorganic chemistry》2005,44(25):9471-9488
A series of nanosized cavity-containing bipyrazolate-bridged metallomacrocycles with dimetal centers, namely, {[(bpy)M]8L4}(NO3)8 [L=3,3',5,5'-tetramethyl-4,4'-bipyrazolyl, Pd, Pt; 1,4-bis-4'-(3',5'-dimethyl)-pyrazolylbenzene), Pd; and 1,4-bis-4'-(3',5'-dimethyl)-pyrazolylbiphenyl, Pd], {[(phen)M]8L4}(NO3)8 [L=3,3',5,5'-tetramethyl-4,4'-bipyrazolyl, Pd, Pt; 1,4-bis-4'-(3',5'-dimethyl)-pyrazolylbenzene, Pd; and 1,4-bis-4'-(3',5'-dimethyl)-pyrazolylbiphenyl, Pd], {[(bpy)Pd]6L3}(NO3)6 [L=1,4-bis-4'-(3',5'-dimethyl)-pyrazolylbenzene,], {[(phen)Pd]6L3}(NO3)6 [L=1,4-bis-4'-(3',5'-dimethyl)-pyrazolylbenzene,], {[(bpy)Pd]4L2}(NO3)4 [L=1,3-bis-4'-(3',5'-dimethyl)-pyrazolylbenzene, and 1,2-bis-4'-(3',5'-dimethyl)-pyrazolylbenzene,], and {[(phen)Pd]4L2}(NO3)4 [L=1,3-bis-4'-(3',5'-dimethyl)-pyrazolylbenzene, and 1,2-bis-4'-(3',5'-dimethyl)-pyrazolylbenzene,] (where bpy=2,2'-bipyridine and phen=1,10-phenanthroline) have been synthesized through a directed self-assembly approach that involves spontaneous deprotonation of the 1H-bipyrazolyl ligands in aqueous solution. These complexes, with weak Pd(II)...Pd(II) or Pt(II)...Pt(II) interactions, have been characterized by elemental analysis, 1H and 13C NMR, cold-spray ionization or electrospray ionization mass spectrometry, UV-visible spectroscopy, and luminescence spectroscopy. Complexes and have also been characterized by single-crystal X-ray diffraction analysis.  相似文献   

9.
The tailoring reaction of the two adjacent nitrile ligands in cis-[PtCl(2)(RCN)(2)] (R = Me, Et, CH(2)Ph, Ph) and [Pt(tmeda)(EtCN)(2)][SO(3)CF(3)](2) (8.(OTf)(2); tmeda = N,N,N',N'-tetramethylethylenediamine) upon their interplay with N,N'-diphenylguanidine (DPG; NH=C(NHPh)(2)), in a 1:2 molar ratio gives the 1,3,5-triazapentadiene complexes [PtCl(2){NHC(R)NHC(R)=NH}] (1-4) and [Pt(tmeda){NHC(Et)NHC(Et)NH}][SO(3)CF(3)](2) (10.(OTf)(2)), respectively. In contrast to the reaction of 8.(OTf)(2) with NH=C(NHPh)(2), interaction of 8.(OTf)(2) with excess gaseous NH(3) leads to formation of the platinum(II) bis(amidine) complex cis-[Pt(tmeda){NH=C(NH(2))Et}(2)][SO(3)CF(3)](2) (9.(OTf)(2)). Treatment of trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) with 2 equiv of NH=C(NHPh)(2) in EtCN (R = Et) and CH(2)Cl(2) (R = CH(2)Ph, Ph) solutions at 20-25 degrees C leads to [PtCl{NH=C(R)NC(NHPh)=NPh}(RCN)] (11-13). When any of the trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) complexes reacts in the corresponding nitrile RCN with 4 equiv of DPG at prolonged reaction time (75 degrees C, 1-2 days), complexes containing two bidentate 1,3,5-triazapentadiene ligands, i.e. [Pt{NH=C(R)NC(NHPh)=NPh}(2)] (14-16), are formed. Complexes 14-16 exhibit strong phosphorescence in the solid state, with quantum yields (peak wavelengths) of 0.39 (530 nm), 0.61 (460 nm), and 0.74 (530 nm), respectively. The formulation of the obtained complexes was supported by satisfactory C, H, and N elemental analyses, in agreement with FAB-MS, ESI-MS, IR, and (1)H and (13)C{(1)H} NMR spectra. The structures of 1, 2, 4, 11, 13, 14, 9.(picrate)(2), and 10.(picrate)(2) were determined by single-crystal X-ray diffraction.  相似文献   

10.
Homo- and heterobimetallic complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}] (in which (1,8-S(2)-nap)=naphtho-1,8-dithiolate and {ML(n)}={PtCl(2)} (1), {PtClMe} (2), {PtClPh} (3), {PtMe(2)} (4), {PtIMe(3)} (5) and {Mo(CO)(4)} (6)) were obtained by the addition of [PtCl(2)(NCPh)(2)], [PtClMe(cod)] (cod=1,5-cyclooctadiene), [PtClPh(cod)], [PtMe(2)(cod)], [{PtIMe(3)}(4)] and [Mo(CO)(4)(nbd)] (nbd=norbornadiene), respectively, to [Pt(PPh(3))(2)(1,8-S(2)-nap)]. Synthesis of cationic complexes was achieved by the addition of one or two equivalents of a halide abstractor, Ag[BF(4)] or Ag[ClO(4)], to [{Pt(mu-Cl)(mu-eta(2):eta(1)-C(3)H(5))}(4)], [{Pd(mu-Cl)(eta(3)-C(3)H(5))}(2)], [{IrCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)] (in which C(5)Me(5)=Cp*=1,2,3,4,5-pentamethylcyclopentadienyl), [{RhCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)], [PtCl(2)(PMe(2)Ph)(2)] and [{Rh(mu-Cl)(cod)}(2)] to give the appropriate coordinatively unsaturated species that, upon treatment with [(PPh(3))(2)Pt(1,8-S(2)-nap)], gave complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}][X] (in which {ML(n)}[X]={Pt(eta(3)-C(3)H(5))}[ClO(4)] (7), {Pd(eta(3)-C(3)H(5))}[ClO(4)] (8), {IrCl(eta(5)-C(5)Me(5))}[ClO(4)] (9), {RhCl(eta(5)-C(5)Me(5))}[BF(4)] (10), {Pt(PMe(2)Ph)(2)}[ClO(4)](2) (11), {Rh(cod)}[ClO(4)] (12); the carbonyl complex {Rh(CO)(2)}[ClO(4)] (13) was formed by bubbling gaseous CO through a solution of 12. In all cases the naphtho-1,8-dithiolate ligand acts as a bridge between two metal centres to give a four-membered PtMS(2) ring (M=transition metal). All compounds were characterised spectroscopically. The X-ray structures of 5, 6, 7, 8, 10 and 12 reveal a binuclear PtMS(2) core with PtM distances ranging from 2.9630(8)-3.438(1) A for 8 and 5, respectively. The napS(2) mean plane is tilted with respect to the PtP(2)S(2) coordination plane, with dihedral angles in the range 49.7-76.1 degrees and the degree of tilting being related to the PtM distance and the coordination number of M. The sum of the Pt(1)coordination plane/napS(2) angle, a, and the Pt(1)coordination plane/M(2)coordination plane angle, b, a+b, is close to 120 degrees in nearly all cases. This suggests that electronic effects play a significant role in these binuclear systems.  相似文献   

11.
Excitation by high-energy light, such as that of 313 nm wavelength, induces a photochemical ligand substitution (PLS) reaction of fac-[Re(bpy)(CO)3Cl] (1a) to give the solvento complexes (OC-6-34)- and (OC-6-44)-[Re(bpy)(CO)2(MeCN)Cl] (2 and 3) in good yields. The disappearance quantum yield of 1a was 0.01+/-0.001 at 313 nm. The products were isolated, and X-ray crystallographic analysis was successfully performed for 2. Time-resolved IR measurements clearly indicated that the CO ligand dissociates with subpicosecond rates after excitation, leading to vibrationally hot photoproducts, which relax within 50-100 ps. Detailed studies of the reaction mechanism show that the PLS reaction of 1a does not proceed via the lowest vibrational level in the 3MLCT excited state. The PLS reaction gives 2 and (OC-6-24)-[Re(bpy)(CO)2(MeCN)Cl] (5) as primary products, and one of the products, 5, isomerizes to 3. This type of PLS reaction is more general, occurring in various fac-rhenium(I) diimine tricarbonyl complexes such as fac-[Re(X2bpy)(CO)3Cl] (X2bpy=4,4'-X2-bpy; X=MeO, NH2, CF3), fac-[Re(bpy)(CO)3(pyridine)]+, and fac-[Re(bpy)(CO)3(MeCN)]+. The stable photoproducts (OC-6-44)- and (OC-6-43)-[Re(bpy)(CO)2(MeCN)(pyridine)]+ and (OC-6-32)- and (OC-6-33)-[Re(bpy)(CO)2(MeCN)2]+ were isolated. The PLS reaction of rhenium tricarbonyl-diimine complexes is therefore applicable as a general synthetic method for novel dicarbonyls.  相似文献   

12.
A nitrosylruthenium alkynyl complex of TpRuCl(C[triple bond]CPh)(NO)(1a) was reacted with PPh3 in the presence of HBF4.Et2O at room temperature to give a beta-phosphonio-alkenyl complex (E)-[TpRuCl{CH=C(PPh3)Ph}(NO)]BF4(2.BF4). On the other hand, for gamma-hydroxyalkynyl complexes TpRuCl{C[triple bond]CC(R)2OH}(NO)(R = Me (1b), Ph (1c), H (1d)), similar treatments with PPh3 were found to give gamma-phosphonio-alkynyl [TpRuCl{C[triple bond]CC(Me)2PPh3}(NO)]BF4(3.BF4),alpha-phosphonio-allenyl [TpRuCl{C(PPh3)=C=CPh2}(NO)]BF4(4.BF4), and a novel product of gamma-hydroxy-beta-phosphonio-alkenyl (E)-[TpRuCl{CH=C(PPh3)CH2OH}(NO)]BF4(5.BF4), respectively. Dominant factors for the selectivity in affording 3-5 were associated with the steric congestion and electronic properties at the gamma-carbons, along with those around the metal fragment. From the bis(alkynyl) complex TpRu(C[triple bond]CPh)2(NO)6, a bis(beta-phosphonio-alkenyl)(E,E)-[TpRu{CH=C(PPh3)Ph}2(NO)](BF4)2{7.(BF4)2} was produced at room temperature. However, similar reactions at 0 degrees C gave an alkynyl beta-phosphonio-alkenyl complex (E)-[TpRu(C[triple bondCPh){CH=C(PPh3)Ph}(NO)]BF4(8.BF4) as a sole product, of which additional hydration in the presence of HBF4.Et2O afforded a [small beta]-phosphonio-alkenyl ketonyl (E)-[TpRu{CH2C(O)Ph}{CH=C(PPh3)Ph}(NO)]BF(.9BF4). Five complexes, 2-5 and 7 were crystallographically characterized.  相似文献   

13.
From the reaction mixture of [M(II)(bpy)Cl(2)], the ligand 2-anilino-4,6-di-tert-butylphenol, H[L(AP)], and 2 equiv of a base (NaOCH(3)) in CH(3)CN under anaerobic conditions were obtained the blue-green neutral complexes [M(II)(L(AP)-H)(bpy)] (M = Pd (1), Pt (2)). (L(AP)-H)(2)(-) represents the o-amidophenolato dianion, (L(AP))(1)(-) is the o-aminophenolate(1-), (L(ISQ))(1)(-) is its one-electron-oxidized, pi-radical o-iminobenzosemiquinonate(1-), and (L(IBQ))(0) is the neutral quinone. Complexes 1 and 2 can be oxidized by ferrocenium hexafluorophosphate, yielding the paramagnetic salts [M(II)(L(ISQ))(bpy)]PF(6) (S = (1)/(2)) (M = Pd (1a), Pt (2a)). The reaction of PtCl(2), 2 equiv of H[L(AP)], and 4 equiv of base in CH(3)CN in the presence of air yields diamagnetic [Pt(L(ISQ))(2)] (3), which is shown to possess an electronic structure that is best described as a singlet diradical. Complexes 1, 1a, 2, 2a, and 3 have been structurally characterized by X-ray crystallography at 100 K. It is clearly established that O,N-coordinated (L(AP)-H)(2)(-) ligands have a distinctly different structure than the corresponding O,N-coordinated (L(ISQ))(1)(-) radicals. It is therefore possible to unambiguously assign the protonation and oxidation level of o-aminophenol derived ligands in coordination compounds. All complexes have been investigated by cyclic voltammetry, spectroelectrochemistry, EPR, and UV-vis spectroscopy. Complexes 1 and 2 can be reversibly oxidized to the [M(II)(L(ISQ))(bpy)](+) and [M(II)(L(IBQ))(pby)](2+) mono- and dications, respectively, and reduced to the [M(L(AP)-H)(bpy(*))](-) anion, where (bpy(*))(1)(-) is the radical anion of 2,2'-bipyridine. Complex 3 exhibits four reversible one-electron-transfer waves (two oxidations and two reductions) which are all shown to be ligand centered. The EPR spectra of the one-electron-reduced species [Pt(L(AP)-H)(L(ISQ))](-) (S = (1)/(2)) and of the one-electron-oxidized species [Pt(L(ISQ))(L(IBQ))](+) (S = (1)/(2)) in CH(2)Cl(2) solutions have been recorded. To gain a better understanding of the electronic structure of 3 and its monooxidized and reduced forms, relativistic DFT calculations have been carried out. Magnetic coupling parameters and hyperfine couplings were calculated and found to be in very good agreement with experiment. It is shown that both the one-electron oxidation and reduction of 3 are ligand centered. A simple MO model is developed in order to understand the EPR properties of the monocation and monoanion of 3.  相似文献   

14.
Various products of the reaction of [E(ddp)] (ddp=2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}-2-pentene; E=Al, Ga) with Pt(0) and Pd(0) olefin complexes are reported. Thus, the reaction of [Pt(cod)(2)] (cod=1,5-cyclooctadiene) with two equivalents of [Ga(ddp)] yields [Pt(1,3-cod){Ga(ddp)}(2)] (1), whereas treatment of [Pd(2)(dvds)(3)] (dvds=1,1,3,3-tetramethyl1,3-divinyldisiloxane) with [E(ddp)] leads to the monomeric compounds [(dvds)Pd{E(ddp)}] (E=Ga (2 a), Al (2 b)) by substitution of the bridging dvds ligand. Both 1 and 2 a readily react with strong pi-acceptor ligands such as CO or tBuNC to give the dimeric compounds [M{mu(2)-Ga(ddp)}(L)] (L=CO, tBuNC; M=Pt (3 a, 5 a), Pd (3 b, 5 b)), respectively. Based on (1)H NMR spectroscopic data, [Pt{Ga(ddp)}(2)(CO)] is likely to be an intermediate in the formation of 3 a. Furthermore, reactions of 1 with H(2) and HSiEt(3) yield the monomeric compounds [Pt{Ga(ddp)}(2)(H)(2)] (7) and [Pt{Ga(ddp)}(2)(H)(SiEt(3))] (8). Finally, the reaction of [Pt(cod)(2)] with one equivalent of [Ga(ddp)] in the presence of H(2) in hexane gives the new dimeric cluster [Pt{mu(2)-Ga(ddp)}(H)(2)](2) (9).  相似文献   

15.
New [M(R(2)pipdt)(2)](BF(4))(2) salts [R(2)pipdt = N,N'-dialkyl-piperazine-2,3-dithione; M = Pd(II), R = Me and M = Pt(II), R = Me, Et, Pr(i)] bearing redox-active cationic dithiolene complexes have been prepared and characterized. These cations react with the redox-active [M(mnt)(2)](2-) [M = Pd(II), Pt(II); mnt = maleonitrile-2,3-dithiolate] anionic dithiolenes to form salts describable as ion pair charge-transfer complexes. X-ray crystallographic studies have shown that [M(Me(2)pipdt)(2)][M(mnt)(2)] complexes, with M = Pd(II) and Pt(II), are isomorphous. Crystal data of the Pt salt (3a): triclinic, Ponemacr; (No. 2); Z = 1; T = 293(2) K; a = 6.784(7) A, b = 8.460(6) A, c = 13.510(5) A, alpha = 100.63(2) degrees, beta = 104.04(2) degrees, gamma = 96.90(2) degrees; R1 = 0.0691 [wR2 = 0.2187 (all data)]. Structural data show that approximately square-planar [Pt(Me(2)pipdt)(2)] dications and regular square-planar [Pt(mnt)(2)] dianions form an infinite anion-cation one-dimensional stack along axis a with a Pt...Pt a/2 distance of 3.392 A and a Pt...Pt...Pt angle of 180 degrees. Anions and cations arrange themselves face-to-face so as to take on a staggered arrangement. These salts exhibit strong absorptions in the visible-near-infrared region assigned to ion pair charge-transfer transitions. A relation between the optical and thermal electron transfer in the solid state is obtained using a "Marcus-Hush model", and a solid-state electrical conductivity in agreement with expectations is observed. Vibrational spectroscopy is in agreement with the existence of charge-transfer interactions between the cationic and anionic components of the salts.  相似文献   

16.
The metal halides of Group 5 MX(5) (M = Nb, Ta; X = F, Cl, Br) react with ketones and acetylacetones affording the octahedral complexes [MX(5)(ketone)] () and [TaX(4){kappa(2)(O)-OC(Me)C(R)C(Me)O}] (R = H, Me, ), respectively. The adducts [MX(5)(acetone)] are still reactive towards acetone, acetophenone or benzophenone, giving the aldolate species [MX(4){kappa(2)(O)-OC(Me)CH(2)C(R)(R')O}] (). The syntheses of (M = Ta, X = F, R = R' = Ph) and (M = Ta, X = Cl, R = Me, R' = Ph) take place with concomitant formation of [(Ph(2)CO)(2)-H][TaF(6)], and [(MePhCO)(2)-H][TaCl(6)], respectively. The compounds [acacH(2)][TaF(6)], and [TaF{OC(Me)C(Me)C(Me)O}(3)][TaF(6)], have been isolated as by-products in the reactions of TaF(5) with acacH and 3-methyl-2,4-pentanedione, respectively. The molecular structures of, and have been ascertained by single crystal X-ray diffraction studies.  相似文献   

17.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

18.
The Pt(II) amido and phenoxide complexes ((t)bpy)Pt(Me)(X), ((t)bpy)Pt(X)(2), and [((t)bpy)Pt(X)(py)][BAr'(4)] (X = NHPh, OPh; py = pyridine) have been synthesized and characterized. To test the feasibility of accessing Pt(IV) complexes by oxidizing their Pt(II) precursors, the previously reported ((t)bpy)Pt(R)(2) (R = Me and Ph) systems were oxidized with I(2) to yield ((t)bpy)Pt(R)(2)(I)(2). The analogous reaction with ((t)bpy)Pt(Me)(NHPh) and MeI yields the corresponding ((t)bpy)Pt(Me)(2)(NHPh)(I) complex. Reaction of ((t)bpy)Pt(Me)(NHPh) and phenylacetylene at 80 °C results in the formation of the Pt(II) phenylacetylide complex ((t)bpy)Pt(Me)(C≡CPh). Kinetic studies indicate that the reaction of ((t)bpy)Pt(Me)(NHPh) and phenylacetylene occurs via a pathway that involves [((t)bpy)Pt(Me)(NH(2)Ph)][TFA] as a catalyst. The reaction of H(2) with ((t)bpy)Pt(Me)(NHPh) ultimately produces aniline, methane, (t)bpy, and elemental Pt. For this reaction, mechanistic studies reveal that 1,2-addition of dihydrogen across the Pt-NHPh bond to initially produce ((t)bpy)Pt(Me)(H) and free aniline is catalyzed by elemental Pt. Heating the cationic complexes [((t)bpy)Pt(NHPh)(py)][BAr'(4)] and [((t)bpy)Pt(OPh)(py)][BAr'(4)] in C(6)D(6) does not result in the production of aniline and phenol, respectively. Attempted synthesis of a cationic system analogous to [((t)bpy)Pt(NHPh)(py)][BAr'(4)] with ligands that are more labile than pyridine (e.g., NC(5)F(5)) results in the formation of the dimer [((t)bpy)Pt(μ-NHPh)](2)[BAr'(4)](2). Solid-state X-ray diffraction studies of the complexes ((t)bpy)Pt(Me)(NHPh), [((t)bpy)Pt(NH(2)Ph)(2)][OTf](2), ((t)bpy)Pt(NHPh)(2), ((t)bpy)Pt(OPh)(2), ((t)bpy)Pt(Me)(2)(I)(2), and ((t)bpy)Pt(Ph)(2)(I)(2) are reported.  相似文献   

19.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

20.
The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2'-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号