首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological world, especially its majority microbial component, is strongly interacting and may be dominated by collective effects. In this review, we provide a brief introduction for statistical physicists of the way in which living cells communicate genetically through transferred genes, as well as the ways in which they can reorganize their genomes in response to environmental pressure. We discuss how genome evolution can be thought of as related to the physical phenomenon of annealing, and describe the sense in which genomes can be said to exhibit an analogue of information entropy. As a direct application of these ideas, we analyze the variation with ocean depth of transposons in marine microbial genomes, predicting trends that are consistent with recent observations using metagenomic surveys.  相似文献   

2.
Textual analysis of typical microbial genomes reveals that they have the statistical characteristics of a DNA sequence of a much shorter length. This peculiar property supports an evolutionary model in which a genome evolves by random mutation but primarily grows by random segmental duplication. That genomes grew mostly by duplication is consistent with the observation that repeat sequences in all genomes are widespread and intragenomic and intergenomic homologous genes are preponderant across all life forms.  相似文献   

3.
Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated. The text was submitted by the authors in English.  相似文献   

4.
5.
The explosive growth in knowledge of the genome of humans and other organisms leaves open the question of how the functioning of genes in interacting networks is coordinated for orderly activity. One approach to this problem is to study mathematical properties of abstract network models that capture the logical structures of gene networks. The principal issue is to understand how particular patterns of activity can result from particular network structures, and what types of behavior are possible. We study idealized models in which the logical structure of the network is explicitly represented by Boolean functions that can be represented by directed graphs on n-cubes, but which are continuous in time and described by differential equations, rather than being updated synchronously via a discrete clock. The equations are piecewise linear, which allows significant analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to the question of how many distinct logical structures exist for n-dimensional networks, showing that the number increases very rapidly with n. We then outline analytic methods that can be used to establish the existence, stability and periods of periodic orbits corresponding to particular cycles on the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least several hundred different patterns of stable periodic behavior are possible, many of them surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that small mutations (reversal of one or a few edges on the n-cube) need not destroy the stability of a limit cycle. Although these networks are very simple as models of gene networks, their mathematical transparency reveals relationships between structure and behavior, they suggest that the possibilities for orderly dynamics in such networks are extremely rich and they offer novel ways to think about how mutations can alter dynamics. (c) 2000 American Institute of Physics.  相似文献   

6.
One of the important steps in the annotation of genomes is the identification of regions in the genome which code for proteins. One of the tools used by most annotation approaches is the use of signals extracted from genomic regions that can be used to identify whether the region is a protein coding region. Motivated by the fact that these regions are information bearing structures we propose signals based on measures motivated by the average mutual information for use in this task. We show that these signals can be used to identify coding and noncoding sequences with high accuracy. We also show that these signals are robust across species, phyla, and kingdom and can, therefore, be used in species agnostic genome annotation algorithms for identifying protein coding regions. These in turn could be used for gene identification.  相似文献   

7.
The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system.  相似文献   

8.
9.
10.
Lanfang Sun  Menghui Li  Lu Jiang  Lu Tan 《Physica A》2007,384(2):739-746
The gene co-regulatory networks of normal and cancerous lung cells are constructed based on microarrays. In these networks, nodes represent genes and links represent co-regulatory relationships between genes. A comparison of these two networks indicates that they are significantly different in terms of both global statistical features and also in some details. The results imply at least four interesting messages: First, lung cancer is not simply a disordered system since it also has some rules in itself. Second, both of these networks can be decomposed into several functional modules, each of which is responsible for certain biological function. Third, among those functional modules, the module which is responsible for immune reactions seems to work independently rather than co-operating with others. Fourth, the phenomenon of module dysfunction is observed in cancerous lung cells.  相似文献   

11.
Recently, inferring gene regulatory network from large-scale gene expression data has been considered as an important effort to understand the life system in whole. In this paper, for the purpose of getting further information about lung cancer, a gene regulatory network of lung cancer is reconstructed from gene expression data. In this network, vertices represent genes and edges between any two vertices represent their co-regulatory relationships. It is found that this network has some characteristics which are shared by most cellular networks of health lives, such as power-law, small-world behaviors. On the other hand, it also presents some features which are obviously different from other networks, such as assortative mixing. In the last section of this paper, the significance of these findings in the context of biological processes of lung cancer is discussed.  相似文献   

12.
Shannon information (SI) and its special case, divergence, are defined for a DNA sequence in terms of probabilities of chemical words in the sequence and are computed for a set of complete genomes highly diverse in length and composition. We find the following: SI (but not divergence) is inversely proportional to sequence length for a random sequence but is length independent for genomes; the genomic SI is always greater and, for shorter words and longer sequences, hundreds to thousands times greater than the SI in a random sequence whose length and composition match those of the genome; genomic SIs appear to have word-length dependent universal values. The universality is inferred to be an evolution footprint of a universal mode for genome growth.  相似文献   

13.
14.
Large-scale genomic technologies has opened new possibilities to infer gene regulatory networks from time series data. Here, we investigate the relationship between the dynamic information of gene expression in time series and the underlying network structure. First, our results show that the distribution of gene expression fluctuations (i.e., standard deviation) follows a power-law. This finding indicates that while most genes exhibit a relatively low variation in expression level, a few genes are revealed as highly variable genes. Second, we propose a stochastic model that explains the emergence of this power-law behavior. The model derives a relationship that connects the standard deviation (variance) of each node to its degree. In particular, it allows us to identify a global property of the underlying genetic regulatory network, such as the degree exponent, by only computing dynamic information. This result not only offers an interesting link to explore the topology of real systems without knowing the real structure but also supports earlier findings showing that gene networks may follow a scale-free distribution.  相似文献   

15.
16.
The higher organisms, eukaryotes, are diploid and most of their genes have two homological copies (alleles). However, the number of alleles in a cell is not constant. In the S phase of the cell cycle all the genome is duplicated and then in the G2 phase and mitosis, which together last for several hours, most of the genes have four copies instead of two. Cancer development is, in many cases, associated with a change in allele number. Several genetic diseases are caused by haploinsufficiency: Lack of one of the alleles or its improper functioning. In the paper we consider the stochastic expression of a gene having a variable number of copies. We applied our previously developed method in which the reaction channels are split into slow (connected with change of gene state) and fast (connected with mRNA/protein synthesis/decay), the later being approximated by deterministic reaction rate equations. As a result we represent gene expression as a piecewise deterministic time-continuous Markov process, which is further related with a system of partial differential hyperbolic equations for probability density functions (pdfs) of protein distribution. The stationary pdfs are calculated analytically for haploidal gene or numerically for diploidal and tetraploidal ones. We distinguished nine classes of simultaneous activation of haploid, diploid and tetraploid genes. This allows for analysis of potential consequences of gene duplication or allele loss. We show that when gene activity is autoregulated by a positive feedback, the change in number of gene alleles may have dramatic consequences for its regulation and may not be compensated by the change of efficiency of mRNA synthesis per allele.  相似文献   

17.
18.
L. Diambra 《Physica A》2011,390(11):2198-2207
In the postgenome era many efforts have been dedicated to systematically elucidate the complex web of interacting genes and proteins. These efforts include experimental and computational methods. Microarray technology offers an opportunity for monitoring gene expression level at the genome scale. By recourse to information theory, this study proposes a mathematical approach to reconstruct gene regulatory networks at a coarse-grain level from high throughput gene expression data. The method provides the a posteriori probability that a given gene regulates positively, negatively or does not regulate each one of the network genes. This approach also allows the introduction of prior knowledge and the quantification of the information gain from experimental data used in the inference procedure. This information gain can be used to choose those genes that will be perturbed in subsequent experiments in order to refine our knowledge about the architecture of an underlying gene regulatory network. The performance of the proposed approach has been studied by in numero experiments. Our results suggest that the approach is suitable for focusing on size-limited problems, such as recovering a small subnetwork of interest by performing perturbation over selected genes.  相似文献   

19.
The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution. In fact, the exhaustion of the prebiotic supply of amino acids and other compounds that were likely present in the ancestral environment, imposed an important selective pressure, favoring those primordial heterotrophic cells which became capable of synthesizing those molecules. Thus, the emergence of metabolic pathways allowed primitive organisms to become increasingly less-dependent on exogenous sources of organic compounds.Comparative analyses of genes and genomes from organisms belonging to Archaea, Bacteria and Eukarya revealed that, during evolution, different forces and molecular mechanisms might have driven the shaping of genomes and the arisal of new metabolic abilities. Among these gene elongations, gene and operon duplications undoubtedly played a major role since they can lead to the (immediate) appearance of new genetic material that, in turn, might undergo evolutionary divergence giving rise to new genes coding for new metabolic abilities. Gene duplication has been invoked in the different schemes proposed to explain why and how the extant metabolic pathways have arisen and shaped. Both the analysis of completely sequenced genomes and directed evolution experiments strongly support one of them, i.e. the patchwork hypothesis, according to which metabolic pathways have been assembled through the recruitment of primitive enzymes that could react with a wide range of chemically related substrates. However, the analysis of the structure and organization of genes belonging to ancient metabolic pathways, such as histidine biosynthesis and nitrogen fixation, suggested that other different hypothesis, i.e. the retrograde hypothesis or the semi-enzymatic theory, may account for the arisal of some metabolic routes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号