首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dynamics of interfacial electron transfer (ET) in the ruthenium-polypyridyl complex [{bis(2,2'-bpy)-(4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol)} ruthenium(II) hexafluorophosphate] (Ru-cat)-sensitized TiO(2) nanoparticles has been investigated using femtosecond transient absorption spectroscopy detecting in the visible and near-infrared region. It has been observed that Ru-cat is coupled strongly with the TiO(2) nanoparticles through its pendant catechol moiety. Electron injection has been confirmed by direct detection of electrons in the conduction band, cation radical of the adsorbed dye, and a bleach of the dye in real time as monitored by transient absorption spectroscopy. A single-exponential and pulse width limited (<100 fs) electron injection has been observed, and the origin of it might have been from the nonthermalized excited states of the Ru-cat molecule. The result gave a strong indication that the electron injection competes with the thermalization of the photoexcited states due to large coupling elements for the forward ET reaction. Back-ET dynamics has been determined by monitoring the decay kinetics of the cation radical and injected electron and also from recovery kinetics of the bleach of the adsorbed dye. It has been fit with a multiexponential function, where approximately 30% of the injected electrons are recombined with a time constant of <2 ps, again indicating large coupling elements for the charge recombination reaction. However, our results have shown relatively long-lived charge separation in the Ru-cat/TiO(2) system as compared to other organic dye-sensitized TiO(2) nanoparticles with similar interactions.  相似文献   

2.
We have synthesized a new photoactive rhenium(i)-complex having a pendant catechol functionality [Re(CO)(3)Cl(L)] (1) (L is 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) for studying the dynamics of the interfacial electron transfer between nanoparticulate TiO(2) and the photoexcited states of this Re(i)-complex using femtosecond transient absorption spectroscopy. Our steady state absorption studies revealed that complex 1 can bind strongly to TiO(2) surfaces through the catechol functionality with the formation of a charge transfer (CT) complex, which has been confirmed by the appearance of a new red-shifted CT band. The longer wavelength absorption band for 1, bound to TiO(2) through the proposed catecholate functionality, could also be explained based on the DFT calculations. Dynamics of the interfacial electron transfer between 1 and TiO(2) nanoparticles was investigated by studying kinetics at various wavelengths in the visible and near infrared regions. Electron injection into the conduction band of the nanoparticulate TiO(2) was confirmed by detection of the conduction band electron in TiO(2) ([e(-)](TiO(2)(CB))) and the cation radical of the adsorbed dye (1˙(+)) in real time as monitored by transient absorption spectroscopy. A single exponential and pulse-width limited (<100 fs) electron injection was observed. Back electron transfer dynamics was determined by monitoring the decay kinetics of 1˙(+) and .  相似文献   

3.
Interfacial electron transfer (ET) in TiO?-based systems is important in artificial solar energy harvesting systems, catalysis, and in advanced oxidative waste water treatment. The fundamental importance of ET processes and impending applications make the study of interfacial ET a promising research area. Photoexcitation of dye molecules adsorbed on the surface of wide band gap semiconductors, such as TiO?, results in the injection of electrons from the dye molecules to the conduction band of the semiconductor or energetically accessible surface electronic states. Using Raman spectroscopy and ensemble-averaging approaches,t he chemical bonding and vibrational relaxation of the ET processes have been extensively studied. However, due to the complexity of the interfacial ET energetics and dynamics, significant questions remain on characterizing the source of the observed complexities. To address these important issues, we have applied advanced spectroscopic and imaging techniques such as confocal and tip-enhanced near-field Raman as well as photoluminescence spectroscopic and topographic imaging. Here we explore single surface states on TiO? as well as the interfacial electronic coupling of alizarin to TiO? single crystalline surfaces.  相似文献   

4.
Interfacial electron transfer (ET) dynamics of 5,10,15-trisphenyl-20-(3,4-dihydroxybenzene) porphyrin (TPP-cat) adsorbed on TiO2 nanoparticles has been studied by femtosecond transient absorption spectroscopy in the visible and near-IR region exciting at 400 and 800 nm. TPP-cat molecule forms a charge transfer (CT) complex with TiO2 nanoparticles through the catechol moiety with the formation of a five-membered ring. Optical absorption measurements have shown that the Q-band of TPP-cat interacts strongly with TiO2 due to chelation; however, the Soret band is affected very little. Optical absorption measurements indicate that the catechol moiety also interacts with TiO2 nanoparticles showing the characteristic band of pure catechol-TiO2 charge transfer (CT) in the visible region. Electron injection has been confirmed by monitoring the cation radical, instant bleach, and injected electron in the conduction band of TiO2 nanoparticles. Electron injection time has been measured to be < 100 fs and recombination kinetics has been best fitted with a multiexponential function, where the majority of the injected electrons come back to the parent cation radical with a time constant of approximately 800 fs for both excitation wavelengths. However, the reaction channel for the electron injection process has been found to be different for both wavelengths. Excitation at 800 nm, found to populate the CT state of the Q-band, and from the photoexcited CT state electron injection into the conduction band, takes place through diffusion. On the other hand, with excitation at 400 nm, a complicated reaction channel takes place. Excitation with 400 nm light excites both the CT band of Cat-TiO2 and also the Soret band of TPP-cat. We have discussed the reaction path in the TPP-cat/TiO2 system after exciting with both 400 and 800 nm laser light. We have also compared ET dynamics by exciting at both wavelengths.  相似文献   

5.
Photoinduced interfacial electron transfer (ET) from molecular adsorbates to semiconductor nanoparticles has been a subject of intense recent interest. Unlike intramolecular ET, the existence of a quasicontinuum of electronic states in the solid leads to a dependence of ET rate on the density of accepting states in the semiconductor, which varies with the position of the adsorbate excited-state oxidation potential relative to the conduction band edge. For metal oxide semiconductors, their conduction band edge position varies with the pH of the solution, leading to pH-dependent interfacial ET rates in these materials. In this work we examine this dependence in Re(L(P))(CO)3Cl (or ReC1P) [L(P) = 2,2'-bipyridine-4,4'-bis-CH2PO(OH)2] and Re(L(A))(CO)3Cl (or ReC1A) [L(A) = 2,2'-bipyridine-4,4'-bis-CH2COOH] sensitized TiO2 and ReC1P sensitized SnO2 nanocrystalline thin films using femtosecond transient IR spectroscopy. ET rates are measured as a function of pH by monitoring the CO stretching modes of the adsorbates and mid-IR absorption of the injected electrons. The injection rate to TiO2 was found to decrease by 1000-fold from pH 0-9, while it reduced by only a factor of a few to SnO2 over a similar pH range. Comparison with the theoretical predictions based on Marcus' theory of nonadiabatic interfacial ET suggests that the observed pH-dependent ET rate can be qualitatively accounted for by considering the change of density of electron-accepting states caused by the pH-dependent conduction band edge position.  相似文献   

6.
用光电化学方法研究了不对称菁类染料敏化TiO2纳米结构电极的光电转换过程.结果表明,该染料的电子激发态能级位置与TiO2纳米粒子导带边位置匹配较好,光激发染料后,其激发态电子可以注入到TiO2纳米多孔膜的导带,从而使TiO2纳米结构电极的吸收光谱和光电流谱红移至可见光区,其 IPCE(Incident photon-to-electron conversion efficiency)值最高可达84.3%.并进一步结合现场紫外-可见吸收光谱研究了外加电势对激发态染料往TiO2纳米多孔膜注入电子过程的影响.  相似文献   

7.
Density functional theory (DFT) in connection with ultrasoft pseudopotential (USP) and generalized gradient spin-polarized approximations (GGSA) is applied to calculate the adsorption energies and structures of monolayer-adsorbed InN on the TiO(2) anatase (101) surface and the corresponding electronic properties, that is, partial density of states (PDOS) for surface and bulk layers of the TiO(2) anatase (101) surface and monolayer-adsorbed InN, to shed light on the possible structural modes for initial photoexcitation within the UV/vis adsorption region followed by fast electron injection through the InN/TiO(2) interface for an InN/TiO(2)-based solar cell design. Our calculated adsorption energies found that the two most probable stable structural modes of monolayer-adsorbed InN on the TiO(2) anatase (101) surface are (1) an end-on structure with an adsorption energy of 2.52 eV through N binding to surface 2-fold coordinated O (O(cn2)), that is, InN-O(cn2), and (2) a side-on structure with an adsorption energy of 3.05 eV through both N binding to surface 5-fold coordinated Ti (Ti(cn5)) and In bridging two surface O(cn2), that is, (O(cn2))(2)-InN-Ti(cn5). Our calculated band gaps for both InN-O(cn2) and (O(cn2))2-InN-Ti(cn5) (including a 1.0-eV correction using a scissor operator) of monolayer-adsorbed InN on the TiO(2) anatase (101) surface are red-shifted to 1.7 eV (730 nm) and 2.3 eV (540 nm), respectively, which are within the UV/vis adsorption region similar to Gratzel's black dye solar cell. Our analyses of calculated PDOS for both surface and bulk layers of the TiO(2) anatase (101) surface and monolayer-adsorbed InN on the TiO(2) anatase (101) surface suggest that the (O(cn2))(2)-InN-Ti(n5) configuration of monolayer-adsorbed InN on the TiO(2) anatase (101) surface would provide a more feasible structural mode for the electron injection through the InN/TiO(2) interface. This is due to the presence of both occupied and unoccupied electronic states for monolayer-adsorbed InN within the band gap TiO(2) anatase (101) surface, which will allow the photoexcitation within the UV/vis adsorption region to take place effectively, and subsequently the photoexcited electronic states will overlap with the unoccupied electronic states around the lowest conduction band of the TiO(2) anatase (101) surface, which will ensure the electron injection through the InN/TiO(2) interface. Finally, another thing worth our attention is our preliminary study of double-layer-adsorbed InN on the TiO(2) anatase (101) surface, that is, (O(cn2))(2)-(InN)(2)-Ti(cn5), with a calculated band gap red-shifted to 2.6 eV (477 nm) and a different overlap of electronic states between double-layer-adsorbed InN and the TiO(2) anatase (101) surface qualitatively indicated that there is an effect of the thickness of adsorbed InN on the TiO(2) anatase (101) surface on both photoexcitation and electron injection processes involved in the photoinduced interfacial electron transfer through InN/TiO(2). A more thorough and comprehensive study of different layers of InN adsorbed in all possible different orientations on the TiO(2) anatase (101) surface is presently in progress.  相似文献   

8.
Interfacial charge-transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the energy levels of a metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here we utilize a previously published model (J. Phys. Chem. B 2005, 109, 10251) to predict the energetics of IFCTA spectra for semiconductors and compare literature observations to these predictions for n-type semiconductors (largely TiO2). In contrast to metals, where IFCTA has been only rarely observed, new absorption features due to IFCTA are common for semiconductors such as TiO2. At issue is whether the electron accepting states in the TiO2 are localized or delocalized over the conduction band.  相似文献   

9.
运用密度泛函理论中的杂化泛函B3LYP研究了高效太阳能电池新型染料敏化剂JK16和JK17的几何结构、电子结构、极化率和超极化率, 并用含时密度泛函理论(TDDFT)研究了电子吸收谱. 基于含时密度泛函理论计算结果和实验结果的定性符合, 指认了在可见和近紫外区的吸收属于π→π*跃迁. 计算结果还表明JK16和JK17激发能最低的三个跃迁都与光诱导电荷转移过程有关, 而且二-二甲基芴氨基苯并噻吩基团对光电转换过程的敏化起主要作用, 发生于染料敏化剂JK16、JK17和TiO2界面之间的电荷转移是由染料分子激发态向半导体导带的电子注入过程. 此外, 通过对JK16和JK17的比较, 分析了亚乙烯基对几何结构、电子结构和谱学特性的影响.  相似文献   

10.
Structural and electronic properties of a small anatase TiO2 nanocrystal sensitized by the ruthenium dye N3 (Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2) have been investigated using density functional theory (DFT) with support from Hartree-Fock (HF) and time dependent DFT (TD-DFT) calculations. Significant structural adjustments of both the dye and the nanocrystal are predicted to be induced by the strain imposed by the simultaneous formation of multiple dye-surface bonds. Electronic properties of the combined dye-nanocrystal system have also been calculated, including information about interfacial orbital mixing and the lowest excited singlet states. Ultrafast photoinduced electron transfer processes across the dye-nanoparticle interface in dye-sensitized solar cells are finally discussed in view of estimated electronic coupling strengths. The calculations predict injection times on the order of 10 fs for MLCT excitations to the ligand pi* levels that interact most strongly with the TiO2 conduction band, and an order of magnitude increase in the injection times for excitations to dye levels with poor spatial or energetic overlaps with the substrate conduction band.  相似文献   

11.
In order to investigate the electron dynamics at the alizarin/I2-/TiO2 interface this study uses a novel state-of-the-art quantum-classical approach that combines time-dependent density functional theory with surface hopping in the Kohn-Sham basis. Representing the dye-sensitized semiconductor Gr?tzel cell with the I-/I3- mediator, the system addresses the problems of an organic/inorganic, molecule/bulk interface that are commonly encountered in molecular electronics, photovoltaics, and photoelectrochemistry. The processes studied include the relaxation of the injected electron inside the TiO2 conduction band (CB), the back electron transfer (ET) from TiO2 to alizarin, the ET from the surface to the electrolyte, and the regeneration of the neutral chromophore by ET from the electrolyte to alizarin. Developing a theoretical understanding of these processes is crucial for improving solar cell design and optimizing photovoltaic current and voltage. The simulations carried out for the entire system that contains many electronic states reproduce the experimental time scales and provide detailed insights into the ET dynamics. In particular, they demonstrate the differences between the optimized geometric and electronic structure of the system at 0 K and the experimentally relevant structure at ambient temperature. The relaxation of the injected electron inside the TiO2 CB, which affects the solar cell voltage, is shown to occur on a 100 fs time scale and occurs simultaneously with the electron delocalization into the semiconductor bulk. The transfer of the electron trapped at the surface to the ground state of alizarin proceeds on a 1 ps time scale and is facilitated by vibrational modes localized on alizarin. If the electrolyte mediator is capable of approaching the semiconductor surface, it can form a stable complex and short-circuit the cell by accepting the photoexcited electron on a subpicosecond time scale. The ET from TiO2 to both alizarin and the electrolyte diminishes the solar cell current. Finally, the simulations show that the electrolyte can efficiently regenerate the neutral chromophore. This is true even though the two species do not form a chemical bond and, therefore, the electronic coupling between them is weaker than in the TiO2-chromophore and TiO2-electrolyte donor-acceptor pairs. The chromophore-electrolyte coupling can occur both directly through space and indirectly through bonding to the semiconductor surface. The ET events involving the electrolyte are promoted primarily by the electrolyte vibrational modes.  相似文献   

12.
The geometries, electronic structures and the electronic absorption spectra of three kinds of ruthenium complexes, which contain tridentate bipyridine-pyrazolate ancillary ligands, were studied using density functional theory (DFT) and time-dependent DFT. The calculated results indicate that: (1) the strong conjugated effects are formed across the pyrazoalte-bipyridine groups; (2) the interfacial electron transfer between electrode and the dye sensitizers is an electron injection processes from the excited dyes to the conduction band of TiO2; (3) the absorption bands in visible region have a mixed character of metal-to-ligand charge transfer and ligand-to-ligand charge transfer, but the main character of absorption bands near UV region ascribe to π→π* transitions; (4) introducing pyrazolate and -NCS groups are favorable for intra-molecular charge transfer, and they are main chromophores that contribute to the sensitization of photon-to-current conversion processes, but introducing -Cl and the terminal group -CF3 are unfavorable to improve the dye performance in dye sensitized solar cells.  相似文献   

13.
We investigated photoelectrodes based on TiO(2)-polyheptazine hybrid materials. Since both TiO(2) and polyheptazine are extremely chemically stable, these materials are highly promising candidates for fabrication of photoanodes for water photooxidation. The properties of the hybrids were experimentally determined by a careful analysis of optical absorption spectra, luminescence properties and photoelectrochemical measurements, and corroborated by quantum chemical calculations. We provide for the first time clear experimental evidence for the formation of an interfacial charge-transfer complex between polyheptazine (donor) and TiO(2) (acceptor), which is responsible for a significant red shift of absorption and photocurrent response of the hybrid as compared to both of the single components. The direct optical charge transfer from the HOMO of polyheptazine to the conduction band edge of TiO(2) gives rise to an absorption band centered at 2.3 eV (540 nm). The estimated potential of photogenerated holes (+1.7 V vs. NHE, pH 7) allows for photooxidation of water (+0.82 V vs. NHE, pH 7) as evidenced by visible light-driven (λ > 420 nm) evolution of dioxygen on hybrid electrodes modified with IrO(2) nanoparticles as a co-catalyst. The quantum-chemical simulations demonstrate that the TiO(2)-polyheptazine interface is a complex and flexible system energetically favorable for proton-transfer processes required for water oxidation. Apart from water splitting, this type of hybrid materials may also find further applications in a broader research area of solar energy conversion and photo-responsive devices.  相似文献   

14.
The observed 6-fs photoinduced electron transfer (ET) from the alizarin chromophore into the TiO2 surface is investigated by ab initio nonadiabatic (NA) molecular dynamics in real time and at the atomistic level of detail. The system derives from the dye-sensitized semiconductor Gr?tzel cell and addresses the problems of an organic/inorganic interface that are commonly encountered in photovoltaics, photochemistry, and molecular electronics. In contrast to the typical Gr?tzel cell systems, where molecular donors are in resonance with a high density of semiconductor acceptor states, TiO2 sensitized with alizarin presents a novel case in which the molecular photoexcited state is at the edge of the conduction band (CB). The high level ab initio analysis of the optical absorption spectrum supports this observation. Thermal fluctuations of atomic coordinates are particularly important both in generating a nonuniform distribution of photoexcited states and in driving the ET process. The NA simulation resolves the controversy regarding the origin of the ultrafast ET by showing that although ultrafast transfer is possible with the NA mechanism, it proceeds mostly adiabatically in the alizarin-TiO2 system. The simulation indicates that the electron is injected into a localized surface state within 8 fs and spreads into the bulk on a 100-fs or longer time scale. The molecular architecture seen in the alizarin-TiO2 system permits efficient electron injection into the edge of the CB by an adiabatic mechanism without the energy loss associated with injection high into the CB by a NA process.  相似文献   

15.
N,N′-对羧苄基吲哚三菁敏化纳米TiO2电极的研究   总被引:1,自引:0,他引:1  
应用光电化学方法研究了N, N′-对羧苄基吲哚三菁(Cy5)染料敏化TiO2纳米晶电极的光电化学行为,优化了敏化的条件.结合Cy5的循环伏安曲线和光吸收阈值,初步确定Cy5电子基态和激发态能级位置.结果表明,Cy5电子激发态能级位置能与TiO2纳米粒子导带边位置相匹配,因而使用该染料敏化可以显著提高TiO2纳米晶的光电流,使TiO2纳米晶电极吸收波长由紫外光区红移至可见光区和近红外区,光电转换效率得到明显改善,在膜厚为6.5μm、敏化时间为6 h的条件下IPCE值(incident photo-to-electricity conversion efficiency)最高可达46.4%,总的光电转换效率η为1.70%.  相似文献   

16.
Photoinduced electron transfers between Nile red (NR) with TiO2 colloidal nanoparticles are studied using picosecond transient absorption and time resolved fluorescence spectroscopy. The dynamics of electron transfer from the dye molecule to the semiconductor were understood from the transient, and also the formation of conduction band electron and Nile red cation radical were detected.  相似文献   

17.
Factors that control photoinduced interfacial electron transfer (ET) between molecular adsorbates and semiconductor nanoparticles have been intensely investigated in recent years. In this work, the solvent dependence of interfacial ET was studied by comparing ET rates in dye sensitized TiO2 nanocrystalline films in different solvent environments. Photoinduced ET rates from Re(LA)(CO)3Cl [LA=dcbpy=4,4'-dicarboxy-2,2'-bipyridine] (ReC1A) to TiO2 nanocrystalline thin films in air, pH buffer, MeOH, EtOH, and DMF were measured by femtosecond transient IR spectroscopy. The ET rates in these solvent environments were noticeably different. However, differences between the rates in pH buffer and nonaqueous solvents (MeOH, EtOH, and DMF) were much smaller than the values expected from much more negative TiO2 conduction band-edge positions in the latter solvents under anhydrous conditions. It was suggested that the presence of adsorbed water, which was evident in FTIR spectra, lowered the band edge of TiO2 in these solvents and reduced the rate differences. The important effect of adsorbed water was verified by comparing two samples of Re(LP)(CO)3Cl [LP=2,2'-bipyridine-4,4'-bis-CH2PO(OH)2] sensitized TiO2 in DMF, in which the presence of a trace amount of water was found to significantly increase the injection rate.  相似文献   

18.
Close to the edge : Photoexcitation of alizarin coupled to the surface of mesoporous TiO2 films leads to ultrafast electron transfer to the TiO2 conduction band (see picture). Complex kinetics after photoexcitation depend on the excitation energy, and indicate a position of the alizarin excited state close to the TiO2 conduction band edge, where the density of acceptor states is reduced.

  相似文献   


19.
Biologically and chemically modified nanoparticles are gaining much attention as a new tool in cancer detection and treatment. Herein, we demonstrate that an alizarin red S (ARS) dye coating on TiO2 nanoparticles enables visible light activation of the nanoparticles leading to degradation of neighboring biological structures through localized production of reactive oxygen species. Successful coating of nanoparticles with dye is demonstrated through sedimentation, spectrophotometry, and gel electrophoresis techniques. Using gel electrophoresis, we demonstrate that visible light activation of dye-TiO2 nanoparticles leads to degradation of plasmid DNA in vitro. Alterations in integrity and distribution of nuclear membrane associated proteins were detected via fluorescence confocal microscopy in HeLa cells exposed to perinuclear localized ARS-TiO2 nanoparticles that were photoactivated with visible light. This study expands upon previous studies that indicated dye coatings on TiO2 nanoparticles can serve to enhance imaging, by clearly showing that dye coatings on TiO2 nanoparticles can also enhance the photoreactivity of TiO2 nanoparticles by allowing visible light activation. The findings of our study suggest a therapeutic application of dye-coated TiO2 nanoparticles in cancer research; however, at the same time they may reveal limitations on the use of dye assisted visualization of TiO2 nanoparticles in live-cell imaging.  相似文献   

20.
利用溶胶-凝胶提拉成膜法制备了TiO2,SnO2,Ag/SnO2,Ag/SnO2/TiO2纳米薄膜半导体催化剂.采用粉末电导法初步研究了纳米半导体薄膜催化剂的表面结构,测定了表面态能级相对于半导体导带边的位置.实验表明:四种催化剂在不同的表面能级位置都存在表面态:TiO2具有两类表面态,其能量分别为0.75eV和0.58eV.Ag/SnO2/TiO2由于Ag的担载,出现更负的表面态能级(0.33eV).这将会显著提高导带电子密度,加速光催化反应速率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号