首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A variety of protonated dipeptides and tripeptides containing glutamic acid or glutamine were prepared by electrospray ionization or by fast atom bombardment ionization and their fragmentation pathways elucidated using metastable ion studies, energy-resolved mass spectrometry and triple-stage mass spectrometry (MS(3)) experiments. Additional mechanistic information was obtained by exchanging the labile hydrogens for deuterium. Protonated H-Gln-Gly-OH fragments by loss of NH(3) and loss of H(2)O in metastable ion fragmentation; under collision-induced dissociation (CID) conditions loss of H-Gly-OH + CO from the [MH - NH(3)](+) ion forms the base peak C(4)H(6)NO(+) (m/z 84). Protonated dipeptides with an alpha-linkage, H-Glu-Xxx-OH, are characterized by elimination of H(2)O and by elimination of H-Xxx-OH plus CO to form the glutamic acid immonium ion of m/z 102. By contrast, protonated dipeptides with a gamma-linkage, H-Glu(Xxx-OH)-OH, do not show elimination of H(2)O or formation of m/z 102 but rather show elimination of NH(3), particularly in metastable ion fragmentation, and elimination of H-Xxx-OH to form m/z 130. Both the alpha- and gamma-dipeptides show formation of [H-Xxx-OH]H(+), with this reaction channel increasing in importance as the proton affinity (PA) of H-Xxx-OH increases. The characteristic loss of H(2)O and formation of m/z 102 are observed for the protonated alpha-tripeptide H-Glu-Gly-Phe-OH whereas the protonated gamma-tripeptide H-Glu(Gly-Gly-OH)-OH shows loss of NH(3) and formation of m/z 130 as observed for dipeptides with the gamma-linkage. Both tripeptides show abundant formation of the y(2)' ion under CID conditions, presumably because a stable anhydride neutral structure can be formed. Under metastable ion conditions protonated dipeptides of structure H-Xxx-Glu-OH show abundant elimination of H(2)O whereas those of structure H-Xxx-Gln-OH show abundant elimination of NH(3). The importance of these reaction channels is much reduced under CID conditions, the major fragmentation mode being cleavage of the amide bond to form either the a(1) ion or the y(1)' ion. Particularly when Xxx = Gly, under CID conditions the initial loss of NH(3) from the glutamine containing dipeptide is followed by elimination of a second NH(3) while the initial loss of H(2)O from the glutamic acid dipeptide is followed by elimination of NH(3). Isotopic labelling shows that predominantly labile hydrogens are lost in both steps. Although both [H-Gly-Glu-Gly-OH]H(+) and [H-Gly-Gln-Gly-OH]H(+) fragment mainly to form b(2) and a(2) ions, the latter also shows elimination of NH(3) plus a glycine residue and formation of protonated glycinamide. Isotopic labelling shows extensive mixing of labile and carbon-bonded hydrogens in the formation of protonated glycinamide.  相似文献   

2.
The [M - H]- ions of a variety of di- to pentapeptides containing H or alkyl side chains have been prepared by electrospray ionization and low-energy collision-induced dissociation (CID) of the deprotonated species carried out in the interface region between the atmospheric pressure source and the quadrupole mass analyzer. Using the nomenclature applied to the fragmentation of protonated peptides, deprotonated dipeptides fragment to give a2 ions (CO2 loss) and y1 ions, where the y1 ion has two fewer hydrogens than the y"1 ions formed from protonated peptides. Deprotonated tri- and tetrapeptides fragment to give primarily y1, c1, and "b2 ions, where the "b2 ion has two fewer hydrogens than the b2 ion observed for protonated peptides. More minor yields of y2, c2, and a2 ions also are observed. The a ion formed by loss of CO2 from the [M - H]- ion shows loss of the N-terminal residue for tripeptides and sequential loss of two amino acid residues from the N-terminus for tetrapeptides. The formation of c(n) ions and the sequential loss of N-terminus residues from the [M - H - CO2]- ion serves to sequence the peptide from the N-terminus, whereas the formation of y(n) ions serves to sequence the peptide from the C-terminus. It is concluded that low-energy CID of deprotonated peptides provides as much (or more) sequence information as does CID of protonated peptides, at least for those peptides containing H or alkyl side chains. Mechanistic aspects of the fragmentation reactions observed are discussed.  相似文献   

3.
The fragmentation reactions of deprotonated N-benzoyl peptides, specifically hippurylglycine, hippurylglyclyclycine, and hippurylphenylalanine (hippuryl = N-benzoylGly) have been studied using MS2 and MS3 experiments as well as deuterium labeling. A major fragment ion is observed at m/z 160 ([C9H6NO2]-) which, upon collisional activation, mainly eliminates CO2 indicating that the two oxygen atoms have become bonded to the same carbon. This observation is rationalized in terms of formation of deprotonated 2-phenyl-5-oxazolone. Various pathways to the deprotonated oxazolone have been elucidated through MS3 experiments. Fragmentation of deprotonated N-acetylalanylalanine gives a relatively weak signal at m/z 112 which, upon collisional activation, fragments, in part, by loss of CO2 leading to the conclusion that the m/z 112 ion is deprotonated 2,4-dimethyl-5-oxazolone.  相似文献   

4.
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the structural characterization of 6-hydroxyluteolin 7-O-glucoside and 7-O-glucosyl-(1 --> 3)-glucoside. In-source fragmentation of both glycosides at an increased potential yielded the protonated and deprotonated aglycone, allowing CID spectra to be obtained. The differentiation between quercetin and 6-hydroxyluteolin aglycones was achieved by product ion analysis of the protonated and deprotonated aglycone (m/z 303 and 301), that showed the characteristic product ions (1,3)A at m/z 151 and 153 for quercetin, and m/z 167 and 169 for 6-hydroxyluteolin, consistent with the trihydroxylated A-ring skeleton. In the negative ion mode both glycosides were shown to undergo collision-induced homolytic and heterolytic cleavages of the O-glycosidic bond producing the aglycone radical-anion [Y0-H]-* and Y0(-) product ions. At lower collision energy, various fragmentations involving the glucose moieties were observed with a relatively higher abundance for the monoglucoside compared to the diglucoside. In the latter case both the inner and the terminal glucose residues were involved in the fragmentations, giving useful information on the 1 --> 3 interglycosidic linkage. CID MS/MS analysis of the sodiated molecules gave complementary information for the structural characterization of the studied compounds. Fragmentation mechanisms are proposed for the observed product ions.  相似文献   

5.
A method is described using LC-MS for the detection of the mycotoxins fusaproliferin (FUS) and beauvericin (BEA) in cultures of Fusarium subglutinans and in naturally contaminated maize. Protonated molecular ion signals for FUS and BEA were observed at m/z 445 and m/z 784, respectively. Collision induced dissociation of the readily dehydrated protonated molecular ion of the sesterterpene FUS (m/z 427) led to the loss of another water molecule (m/z 409) and acetic acid (m/z 385), while the cyclic lactone trimer BEA fragmented to yield the protonated dimer (m/z 523) and monomer (m/z 262), respectively. Detection of FUS was best performed in the MS-MS mode while BEA displayed a stronger signal in the MS mode. The on-column instrumental detection limits for pure FUS and BEA were found to be 2 ng and 20 pg (S/N=2) while those in naturally contaminated maize were 1 microg/kg and 0.5 microg/kg, respectively. Five South African strains of F. subglutinans were analyzed following methanol extraction of which four produced FUS at levels between 330 mg/kg and 2630 mg/kg while only three produced BEA at levels between 140 mg/kg and 700 mg/kg. Application of this method to naturally contaminated maize samples from the Transkei region of South Africa showed FUS at levels of 8.8-39.6 microg/kg and BEA at 7.6-238.8 microg/kg.  相似文献   

6.
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.  相似文献   

7.
Spectra obtained using electrospray ionization mass spectrometry (ESI-MS) of the mollusk Elysia grandifolia showed a cluster of molecular ion peaks centered at a molecular mass of 1478 Da (kahalalide F, an anticancer agent). Two new molecules, kahalalide R (m/z 1464) and S (m/z 1492) were characterized using tandem mass spectrometry. The mass differences of 14 Da suggest that they are homologous molecules. In addition, previously identified kahalalide D and kahalalide G are also reported. However, the ESI-MS of the mollusk's algal diet Bryopsis plumosa showed the presence of only kahalalide F. The amino acid sequences of kahalalide R and S are proposed using collision-induced dissociation (CID) experiments of singly and doubly charged molecular ions and by comparison with the amino acid sequence of kahalalide F. The pathway is presented for the loss of amino acid residues in kahalalide F. It is observed that there is sequential loss of amino acids in the linear peptide chain, but in the cyclic part the ring opens at the amide bond rather than at the lactone linkage, and the loss of amino acid residues is not sequential. The CID experiment of the alkali-metal-cationized molecular ions shows that the sodium and potassium ions coordinate to the amide nitrogen/oxygen in the linear peptide chain of the molecule and not to the lactone oxygen of the lactone. In the case of kahalalide D, CID of the protonated peptide opens the depsipeptide ring to form a linear peptide with acylium ion, and fragment ion signals indicate losses of amino acids in sequential order. In this study, tandem mass spectrometry has provided the detailed information required to fully characterize the new peptides.  相似文献   

8.
Low-energy collision-induced dissociation (CID) of acetylcholine (ACh) yields only two fragment ions: the dominant C(4)H(7)O(2)(+) ion at m/z 87, arising from trimethylamine loss; and protonated trimethylamine at m/z 60. Since the literature is replete with conflicting mechanisms for the loss of trimethylamine from ACh, in this article density functional theory (DFT) calculations are used to assess four competing mechanisms: (1) Path A involves a neighboring group attack to form a five-membered ring product, 2-methyl-1,3-dioxolan-2-ylium cation; (2) Path B is a neighboring group attack to form a three-membered ring product, 1-methyl-oxiranium ion; (3) Path C involves an intramolecular elimination reaction to form CO protonated vinylacetate; and (4) Path D is a 1,2-hydride migration reaction forming CH(2)-protonated vinylacetate. At the MP2/6-311++G(2d,p)//B3-LYP/6-31+G(d,p) level of theory path A is the kinetically favored pathway, with a transition-state energy barrier of 37.7 kcal mol(-1) relative to the most stable conformer of ACh. The lowest energy pathway for the formation of protonated trimethylamine was also calculated to proceed via path A, involving proton transfer within the ion-molecule complex intermediate, with the exocylic methyl group being the proton donor. To confirm the site of proton transfer, low-energy CID of acetyl-d(3)-choline (d(3)-ACh) was carried out, which revealed loss of trimethylamine and the formation of Me(3)ND(+).  相似文献   

9.
Electrospray ionization (ESI) and collisionally induced dissociation (CID) mass spectra were obtained for five tetracyclines and the corresponding compounds in which the labile hydrogens were replaced by deuterium by either gas phase or liquid phase exchange. The number of labile hydrogens, x, could easily be determined from a comparison of ESI spectra obtained with N2 and with ND3 as the nebulizer gas. CID mass spectra were obtained for [M + H]+ and [M - H]- ions and the exchanged analogs, [M(Dx) + D]+ and [M(Dx) - D]- , and produced by ESI using a Sciex API-III(plus) and a Finnigan LCQ ion trap mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the MS(N) spectra of the un-deuterated and deuterated species. Protonated tetracyclines dissociate initially by loss of H2O (D2O) and NH3 (ND3) if there is a tertiary OH at C-6. The loss of H2O (D2O) is the lower energy process. Tetracyclines without the tertiary OH at C-6 lose only NH3 (ND3) initially. MSN experiments showed easily understandable losses of HDO, HN(CH3)2, CH3 - N=CH2, and CO from fragment ions. The major fragment ions do not come from cleavage reactions of the species protonated at the most basic site. Deprotonated tetracyclines had similar CID spectra, with less fragmentation than those observed for the protonated tetracyclines. The lowest energy decomposition paths for the deprotonated tetracyclines are the competitive loss of NH3 (ND3) or HNCO (DNCO). Product ions appear to be formed by charge remote decompositions of species de-protonated at the C-10 phenol.  相似文献   

10.
Upon activation in the gas phase, protonated benzoic acid (m/z 123) undergoes fragmentation by several mechanisms. In addition to the predictable water loss followed by a CO loss, the m/z 123 ion more intriguingly eliminates a molecule of benzene to generate protonated carbon dioxide (H ‐ O+ ═ C ≡ O , m/z 45), or a molecule of carbon dioxide to yield protonated benzene (m/z 79). Experimental evidence shows that the incipient proton ambulates during the fragmentation processes. For the CO2 or benzene loss, protonated benzoic acid transfers the charge‐imparting proton initially to the ortho position and then to the ipso position to generate a transient species which dissociates to form an ion‐neutral complex between benzene and protonated CO2. The formation of the m/z 45 ion is not a phenomenon unique to benzoic acid: spectra from protonated isophthalic acid, terephthalic acid, trans‐cinnamic acid and some aliphatic acids also displayed a peak for m/z 45. However, the m/z 45 peak is structurally diagnostic only for certain benzene polycarboxylic acids because the spectra of compounds with two carboxyl groups on adjacent ring carbons do not produce a peak at m/z 45. For the m/z 79 ion to be formed, an intramolecular reaction should take place in which protonated CO2 within the ion‐neutral complex acts as the attacking electrophile to transfer a proton to benzene. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
A library of collision-induced dissociation (CID) accurate mass spectra has been developed for efficient use of liquid chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) as a tool in systematic toxicological analysis. The mass spectra (Δm < 3 ppm) of more than 2,500 illegal and therapeutic drugs, pesticides, alkaloids, other toxic chemicals and metabolites were measured, by use of an Agilent 6530 instrument, by flow-injection of 1 ng of the pure substances in aqueous ammonium formate-formic acid-methanol, with positive and negative electrospray-ionization (ESI), selection of the protonated or deprotonated molecules [M+H](+) or [M-H](-) by the quadrupole, and collision induced dissociation (CID) with nitrogen as collision gas at CID energies of 10, 20, and 40 eV. The fragment mass spectra were controlled for structural plausibility, corrected by recalculation to the theoretical fragment masses and added to a database of accurate mass data and molecular formulas of more than 7,500 toxicologically relevant substances to form the "database and library of toxic compounds". For practical evaluation, blood and urine samples were spiked with a mixture of 33 drugs at seven concentrations between 0.5 and 500 ng mL(-1), prepared by dichloromethane extraction or protein precipitation, and analyzed by LC-QTOF-MS in data-dependent acquisition mode. Unambiguous identification by library search was possible for typical basic drugs down to 0.5-2 ng mL(-1) and for benzodiazepines down to 2-20 ng mL(-1). The efficiency of the method was also demonstrated by re-analysis of venous blood samples from 50 death cases and comparison with previous results. In conclusion, LC-QTOF-MS in data-dependent acquisition mode combined with an accurate mass database and CID spectra library seemed to be one of the most efficient tools for systematic toxicological analysis.  相似文献   

12.
The low-energy CID mass spectra of the [M-H](-) ions of a variety of dipeptides containing glutamic acid have been obtained using cone-voltage collisional activation. Dipeptides with the gamma-linkage, H-Glu(Xxx-OH)-OH, are readily distinguished from those with the alpha-linkage, H-Glu-Xxx-OH, by the much more prominent elimination of H-Xxx-OH from the [M-H](-) ions of the former isomers, resulting in formation of m/z 128, presumably deprotonated pyroglutamic acid. Dipeptides with the reverse linkage, H-Xxx-Glu-OH, show distinctive fragmentation reactions of the [M-H](-) ions including enhanced elimination of CO(2) and formation of deprotonated glutamic acid. Exchange of the labile hydrogens for deuterium has shown that there is considerable interchange of C-bonded hydrogens with labile (N- and O-bonded) hydrogens prior to most fragmentation reactions. All dipeptides show loss of H(2)O from [M-H](-). MS(3) studies show that the [M-H-H(2)O](-) ion derived from H-Glu-Gly-OH has the structure of deprotonated pyroglutamylglycine while the [M-H-H(2)O](-) ions derived from H-Glu(Gly-OH)-OH and H-Gly-Glu-OH show a different fragmentation behaviour indicating distinct structures for the fragment ions.  相似文献   

13.
The radical anion of 2,5-dicyano-1,5-hexadiene is shown to undergo Cope cyclization in a flowing afterglow-triple quadrupole apparatus. The cyclic structure of the 2,5-dicyano-1,5-hexadiene radical anion was established by using chemical reactivity. The ion reacts with CO2 and CS2 by addition, whereas the radical anions of closed-shell molecules such as fumaronitrile do not react with these reagents. The ion exhibits reactivity characteristic of a distonic ion in that it sequentially adds CO2 and NO or NO2. It reacts with NO by forming a product at m/z 135 corresponding to addition followed by loss of HCN. The reactivity and CID spectrum of the product ion at m/z 135 agrees with that of oximate ion, which requires a cyclic precursor ion. Attempts to generate radical anions of acrylonitrile and 2,6-dicyano-1,6-heptadiene were unsuccessful, providing additional evidence against a linear structure as a stable structure for 2,5-dicyano-1,5-hexadiene radical anion. The cyclization of the radical anion of the 2,5-dicyano-1,5-hexadiene is the first example of an electron-catalyzed Cope cyclization.  相似文献   

14.
Doubly protonated phosphopeptide (YGGMHRQET(p)VDC) ions obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions via collision-induced dissociation (CID). The resulting ions were analyzed and detected by using an electrostatic analyzer (ESA). Whereas doubly charged fragment ions resulting from collisionally activated dissociation (CAD) were dominant in the CID spectrum with the Xe target, singly charged fragment ions resulting from electron transfer dissociation (ETD) were dominant in the CID spectrum with the Cs target. The most intense peak resulting from ETD was estimated to be associated with the charge-reduced ion with H2 lost from the precursor. Five c-type fragment ions with amino acid residues detached consecutively from the C-terminal were clearly observed without a loss of the phosphate group. These ions must be formed by N--Calpha bond cleavage, in a manner similar to the cases of electron capture dissociation (ECD) and ETD from negative ions. Although the accuracy in m/z of the CID spectra was about +/-1 Th because of the mass analysis using the ESA, it is supposed from the m/z values of the c-type ions that these ions were accompanied by the loss of a hydrogen atom. Four z-type (or y--NH3, or y--H2O) ions analogously detached consecutively from the N-terminal were also observed. The fragmentation processes took place within the time scale of 4.5 micros in the high-energy collision. The present results demonstrated that high-energy ETD with the alkali metal target allowed determination of the position of phosphorylation and the amino acid sequence of post-translational peptides.  相似文献   

15.
Collision-induced dissociation (CID) was performed on multiply deprotonated ions from three commercial peptides: hirudin (54-65), fibrinopeptide B, and oxidized insulin chain A. Ions were produced by electrospray ionization in a Fourier transform ion cyclotron resonance mass spectrometer. Each of these peptides contains multiple acidic residues, which makes them very difficult to ionize in the positive mode. However, the peptides deprotonate readily making negative ion studies a viable alternative. The CID spectra indicated that the likely deprotonation sites are acidic residues (aspartic, glutamic, and cysteic acids) and the C-terminus. The spectra are rife with c, y, and internal ions, although some a, b, x, and z ions form. Many of the fragment ions were formed from cleavage adjacent to acidic residues, both N- and C-terminal to the acidic site. In addition, neutral loss (e.g., NH3, CH3, H2O, and CO2) was prevalent from both the parent ions and from fragment ions. These neutral eliminations were often indicative of specific amino acid residues. The fragmentation patterns from several charge states of the parent ions, when combined, provide significant primary sequence information. These results suggest that negative mode CID of multiply deprotonated ions provides useful structural information and can be worthwhile for highly acidic peptides that do not form positive ions in abundance.  相似文献   

16.
Fruitbodies of the genus Hygrophorus (Basidiomycetes) contain a series of anti-biologically active compounds. These substances named hygrophorones possess a cyclopentenone skeleton. LC/ESI-MS/MS presents a valuable tool for the identification of such compounds. The mass spectral behaviour of typical selected members of this group under positive and negative ion electrospray conditions is discussed. Using the ESI collision-induced dissociation (CID) mass spectra of the [M + H]+ and [M - H]- ions, respectively, the compounds can be classified with respect to the substitution pattern at the cyclopentenone ring and the type of oxygenation at C-6 (hydroxy/acetoxy or oxo function) of the side chain. The elemental composition of the fragment ions was determined by ESI-QqTOF measurements. Thus, in case of the negative ion CID mass spectra an unusual loss of CO2 from the deprotonated molecular ions could be observed.  相似文献   

17.
Fragmentation mechanisms of protonated chalcone and its derivatives with different functional groups were investigated by atmospheric pressure chemical ionization with tandem mass spectrometry (MS/MS). The major fragmentation pathways were loss of the phenyl group from the A or B ring, combined with loss of CO. Losses of H(2)O and CO from the precursor ions of [M+H](+) are proposed to occur via rearrangements. Elimination of water from protonated chalcones was observed in all the title compounds to yield a stable ion but it was difficult to obtain skeletal fragmentation of a precursor ion. Loss of CO was found in the MS/MS spectra of all the compounds except the nitro-substituted chalcones. When the [M+H--CO](+) ion was fragmented in the MS/MS experiments, there were distinctive losses of 15 and 28 Da, as the methyl radical and ethylene, respectively. The ion at m/z 130, found only in the nitro-substituted chalcones, was assigned as C(9)H(6)O by Fourier transform ion cyclotron resonance (FTICR)-MS/MS; m/z 130 is a common fragment ion in the electron ionization (EI) spectra of chalcones. In order to more easily distinguish the constitutional isomers of these chalcones, breakdown curves were produced and these provided strong support in this study.  相似文献   

18.
Gas-phase mass spectrometric studies and calculations were performed for the reaction of naked phenylium ion with several benzene halides. From these reactions, the molecular ion for biphenyl as the predominant product was obtained only from the reaction of phenylium ions with iodobenzene and bromobenzene. Furthermore, through the collision-induced dissociation (CID) of the ion at m/z 281, the only dissociation observed is the loss of a phenyl radical, which indicates that a single-electron transfer (SET) mechanism might have occurred within the reaction. Additionally, according to the comparison between the CID experiments of those isomeric compounds of the sigma-complexes and the CID experiment of the ion at m/z 281 captured in the ion trap, we have also defined the captured ion at m/z 281 as an SET-intimate ion pair rather than those of sigma-complexes or the diphenyliodonium.  相似文献   

19.
Collision-induced dissociation (CID) mass spectra of anions derived from several hydroxyphenyl carbaldehydes and ketones were recorded and mechanistically rationalized. For example, the spectrum of m/z 121 ion of deprotonated ortho-hydroxybenzaldehyde shows an intense peak at m/z 93 for a loss of carbon monoxide attributable to an ortho-effect mediated by a charge-directed heterolytic fragmentation mechanism. In contrast, the m/z 121 ion derived from meta and para isomers undergoes a charge-remote homolytic cleavage to eliminate an *H and form a distonic anion radical, which eventually loses CO to produce a peak at m/z 92. In fact, for the para isomer, this two-step homolytic mechanism is the most dominant fragmentation pathway. The spectrum of the meta isomer on the other hand, shows two predominant peaks at m/z 92 and 93 representing both homolytic and heterolytic fragmentations, respectively. (18)O-isotope-labeling studies confirmed that the oxygen in the CO molecule that is eliminated from the anion of meta-hydroxybenzaldehyde originates from either the aldehydic or the phenolic group. In contrast, anions of ortho-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde, both of which show two consecutive CO eliminations, specifically lose the carbonyl oxygen first, followed by that of the phenolic group. Anions from 2-hydroxyphenyl alkyl ketones lose a ketene by a hydrogen transfer predominantly from the alpha position. Interestingly, a very significant charge-remote 1,4-elimination of a H(2) molecule was observed from the anion derived from 2,4-dihydroxybenzaldehyde. For this mechanism to operate, a labile hydrogen atom should be available on the hydroxyl group adjacent to the carbaldehyde functionality.  相似文献   

20.
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号