首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diels-Alder reactions of (SS)-2-(2'-methoxynaphthylsulfinyl)-1, 4-benzoquinone (1b), 2-(p-methoxyphenylsulfinyl)-1,4-benzoquinone (1c), and 2-(p-nitrophenylsulfinyl)-1,4-benzoquinone (1d) with cyclopentadiene are reported. These cycloadditions allowed the highly chemo- and stereoselective formation of both diastereoisomeric endo-adducts resulting from reaction on the unsubstituted double bond C(5)-C(6) of quinones working under thermal and Eu(fod)(3)- or BF(3).OEt(2)-catalyzed conditions. The synthesis of endo-adduct [4aS,5S,8R,8aR,SS]-9d resulting from cycloaddition on the substituted C(2)-C(3) double bond was achieved in a chemo- and diastereoselective way from quinone 1d in the presence of ZnBr(2). The reactivity and selectivity of the process proved to be dependent on the electron density of the arylsulfinyl group.  相似文献   

2.
Exploring the reactivity of the mixed-metal reagent [(TMEDA)Na(TMP)Zn(t)Bu(2)] (1) towards substituted metallocene benzoylferrocene 2, this study has found that two competing reactivity pathways are available for the sodium TMP-zincate, namely (i) remote 1,6-nucleophilic addition of a tert-butyl group to the phenyl ring of 2, and (ii) simultaneous alpha-deprotonation of the substituted cyclopentadienyl ring of the metallocene and alkylation (1,2-addition) across the C=O bond of the carbonyl group. A key organometallic intermediate [(TMEDA)Na(μ-TMP)Zn{OC((t)Bu)(Ph)(η(5)-C(5)H(3))Fe(η(5)-C(5)H(5))}] (3), resulting from the latter reaction has been trapped and characterised by X-ray crystallography and multinuclear ((1)H and (13)C) NMR spectroscopy. Its molecular structure revealed a unique two-fold activation of the tert-butyl groups bonded to zinc in the bimetallic base 1, showing for the first time that each alkyl group can exhibit markedly different reactivities (deprotonation vs. 1,2-addition) towards the same substrate molecule. Iodine interception of the organometallic intermediates of the reaction between 1 and 2 allowed the isolation and characterization ((1)H, (13)C NMR and X-ray crystallography) of the ferrocenyl derivatives [PhC(OH)((t)Bu)(η(5)-C(5)H(3)I)Fe(η(5)-C(5)H(5))] (4) and [4-(t)Bu-C(6)H(4)C([double bond, length as m-dash]O)(η(5)-C(5)H(4))Fe(η(5)-C(5)H(5))] (5) in a 29% and 24% isolated yield respectively. The low yield observed for the formation of 5 (resulting from the 1,6-addition reaction followed by spontaneous aerobic oxidation during aqueous workup) could be increased to 41% when the reaction mixture was hydrolysed in the presence of the radical oxidant TEMPO.  相似文献   

3.
The reaction of [Ni2((i)Pr2Im)4(COD)] 1a or [Ni((i)Pr2Im)2(eta(2)-C2H4)] 1b with different fluorinated arenes is reported. These reactions occur with a high chemo- and regioselectivity. In the case of polyfluorinated aromatics of the type C6F5X such as hexafluorobenzene (X = F) octafluorotoluene (X = CF3), trimethyl(pentafluorophenyl)silane (X = SiMe3), or decafluorobiphenyl (X = C6F5) the C-F activation regioselectively takes place at the C-F bond in the para position to the X group to afford the complexes trans-[Ni((i)Pr2Im)2(F)(C6F5)]2, trans-[Ni((i)Pr2Im)2(F)(4-(CF3)C6F4)] 3, trans-[Ni((i)Pr2Im)2(F)(4-(C6F5)C6F4)] 4, and trans-[Ni((i)Pr2Im)2(F)(4-(SiMe3)C6F4)] 5. Complex 5 was structurally characterized by X-ray diffraction. The reaction of 1a with partially fluorinated aromatic substrates C6H(x)F(y) leads to the products of a C-F activation trans-[Ni((i)Pr2Im)2(F)(2-C6FH4)] 7, trans-[Ni((i)Pr2Im)2(F)(3,5-C6F2H3)] 8, trans-[Ni((i)Pr2Im)2(F)(2,3-C6F2H3)] 9a and trans-[Ni((i)Pr2Im)2(F)(2,6-C6F2H3)] 9b, trans-[Ni((i)Pr2Im)2(F)(2,5-C6F2H3)] 10, and trans-[Ni((i)Pr2Im)2(F)(2,3,5,6-C6F4H)] 11. The reaction of 1a with octafluoronaphthalene yields exclusively trans-[Ni((i)Pr2Im)2(F)(1,3,4,5,6,7,8-C10F7)] 6a, the product of an insertion into the C-F bond in the 2-position, whereas for the reaction of 1b with octafluoronaphthalene the two isomers trans-[Ni((i)Pr2Im)2(F)(1,3,4,5,6,7,8-C10F7)] 6a and trans-[Ni((i)Pr2Im)2(F)(2,3,4,5,6,7,8-C10F7)] 6b are formed in a ratio of 11:1. The reaction of 1a or of 1b with pentafluoropyridine at low temperatures affords trans-[Ni((i)Pr2Im)2(F)(4-C5NF4)] 12a as the sole product, whereas the reaction of 1b performed at room temperature leads to the generation of trans-[Ni((i)Pr2Im)2(F)(4-C5NF4)] 12a and trans-[Ni((i)Pr2Im)2(F)(2-C5NF4)] 12b in a ratio of approximately 1:2. The detection of intermediates as well as kinetic studies gives some insight into the mechanistic details for the activation of an aromatic carbon-fluorine bond at the {Ni((i)Pr2Im)2} complex fragment. The intermediates of the reaction of 1b with hexafluorobenzene and octafluoronaphthalene, [Ni((i)Pr2Im)2(eta(2)-C6F6)] 13 and [Ni((i)Pr2Im)2(eta(2)-C10F8)] 14, have been detected in solution. They convert into the C-F activation products. Complex 14 was structurally characterized by X-ray diffraction. The rates for the loss of 14 at different temperatures for the C-F activation of the coordinated naphthalene are first order and the estimated activation enthalpy Delta H(double dagger) for this process was determined to be Delta H(double dagger) = 116 +/- 8 kJ mol(-1) (Delta S(double dagger) = 37 +/- 25 J K(-1) mol(-1)). Furthermore, density functional theory calculations on the reaction of 1a with hexafluorobenzene, octafluoronaphthalene, octafluorotoluene, 1,2,4-trifluorobenzene, and 1,2,3-trifluorobenzene are presented.  相似文献   

4.
Sheddan NA  Mulzer J 《Organic letters》2005,7(23):5115-5118
[reaction: see text] We describe a convergent and flexible synthesis of 15-deoxy-16-(m-tolyl)-17,18,19,20-tetranorisocarbacyclin (15-deoxy-TIC), a simple isocarbacyclin derivative. The synthesis takes advantage of two key step reactions: a regioselective deprotonation of the described ketone under substrate control which is then trapped, as the enol triflate, to generate the C6-C9alpha endocyclic double bond, followed by an sp2-sp3 Pd-catalyzed cross-coupling reaction (C5-C6) with a suitable primary alkyl Grignard reagent. Introduction of the C13-C14 (E)-double bond in the omega-side chain is performed by the Julia-Kocie?ski olefination.  相似文献   

5.
The total synthesis of the epidermal growth factor inhibitor reveromycin B (2) in 25 linear steps from chiral methylene pyran 13 is described. The key steps involved an inverse electron demand hetero-Diels-Alder reaction between dienophile 13 and diene 12 to construct the 6,6-spiroketal 11 which upon oxidation with dimethyldioxirane and acid catalyzed rearrangement gave the 5,6-spiroketal aldehyde 9. Lithium acetylide addition followed by oxidation/reduction and protective group manipulation provided the reveromycin B spiroketal core 8 which was converted into the reveromycin A (1) derivative 6 in order to confirm the stereochemistry of the spiroketal segment. Introduction of the C1-C10 side chain began with sequential Wittig reactions to form the C8-C9 and C7-C6 bonds, and a tin mediated asymmetric aldol reaction installed the C4 and C5 stereocenters. The final key steps to the target molecule 2 involved a Stille coupling to introduce the C21-C22 bond, succinoylation, selective deprotection, oxidation, and Wittig condensation to form the final C2-C3 bond. Deprotection was effected by TBAF in DMF to afford reveromycin B (2) in 72% yield.  相似文献   

6.
用密度泛函方法在B3LYP/6-31G*水平上研究了顺-8-三甲基锡烷基-6-辛烯醛分子内环化反应的机理,通过振动分析和内禀反应坐标对过渡态进行了确认,解析了三种反应途径.结果表明,反应具有很强的立体选择性,虽然-OSn(CH3)3和-C2H3基团均处于环的平伏位,是最稳定的产物构型,但是主要产物是经过活化能最低,且具有两个六元环椅式构象的过渡态形成的,主要产物中-OSn(CH3)3基团处于环的直立位.该结果与实验事实一致.  相似文献   

7.
Reaction of 1,3-dicyanotetrafluorobenzene with 2 equiv of (trimethylsilyl)iminophosphoranes gave the disubstituted derivatives 4,6-(CN)(2)C(6)F(2)-1,3-AB: 1, A = B = (N=PPh(3)); 2, A = B = (N=PPh(2)Me); and 3, A = (N=PPh(3)), B = (N=PPh(2)Me). Monosubstituted compounds of the type 2,4-(CN)(2)C(6)F(3)-1-A; notably 4, A = (N=PPh(3)), and 5, A = (N=PPh(2)Me), were readily obtained by reaction of 1 molar equiv of the silylated iminophosphorane with the cyanofluoro aromatic. Substitution of the fluorine para to the CN group(s) occurs in all cases. Reactions of 1,2- and 1,4-dicyanotetrafluorobenzene with (trimethylsilyl)iminophosphoranes gave only monosubstituted derivatives 3,4-(CN)(2)C(6)F(3)-1-A (6, A = (N=PPh(3)), and 7, A = (N=PPh(2)Me)) and 2,5-(CN)(2)C(6)F(3)-1-A (8, A = (N=PPh(3)), and 9, A = (N=PPh(2)Me)), respectively, as the result of electronic deactivation of the second substitutional point. 1, 4,6-(CN)(2)C(6)F(2)-1,3-(N=PPh(3)), 2, 4,6-(CN)(2)C(6)F(2)-1,3-(N=PPh(2)Me)(2), and 3, 4,6-(CN)(2)C(6)F(2)-1-(N=PPh(3))-3-(N=PPh(2)Me) have been structurally characterized. For 1 (at 21 degrees C), monoclinic, C2/(c) (No. 15), a = 15.289(2) ?, b = 10.196(1) ?, c = 23.491(6) ?, beta = 91.63(2) degrees, V = 3660(2) ?(3), and Z = 4. The P=N bond length is 1.579(2) ? and the P(V)-N-C(phenyl) angle is 134.0(2) degrees. For 2, (at 21 degrees C) monoclinic, C2/(c) (No. 15), a = 18.694(2) ?, b = 8.576(1) ?, c = 40.084(4) ?, beta = 94.00(1) degrees, V = 6411(2) ?(3), and Z = 8. The P(1)=N(1) bond length is 1.570(4) ?, the P(2)=N(2) bond length is 1.589(3) ?, the P(1)-N(1)-C(14) angle is 131.6(3) degrees, and the P(2)-N(2)-C(16) angle is 131.3(3) degrees. For 3, (at -80 degrees C) monoclinic, P2(1)/c (No. 14), a = 9.210(1) ?, b = 18.113(2) ?, c = 20.015(2) ?, beta = 100.07(1) degrees, V = 3287(2) ?(3), and Z = 4. The P(1)=N(1) bond length (PPh(3) group) is 1.567(4) ?, the P(2)=N(2) bond length (PPh(2)Me group) is 1.581(5) ?, the P(1)-N(1)-C(1) angle is 140.4(4) degrees, and the P(2)-N(2)-C(3) angle is 129.4(4) degrees. These new multifunctional chelating ligands readily react with [Rh(cod)Cl](2) and AgClO(4) to give cationic Rh(I) complexes in which the imine and/or the nitrile groups are coordinated to the Rh center.  相似文献   

8.
1 INTRODUCTION Phosphorus-containing vinyl compounds havebeen widely studied due to their versatile physiolo-gical activities and applications in transition metalchemistry, asymmetric catalysis and photorearrange-ment[1~4]. In our previous papers, we have reportedthe syntheses of 2,2,4,5-tetrasubstituted-1,3-dithio-les[5] and 2,5-bis(morpholino)-3,4-bis-(p-chloro-phe-nyl)thiophenes[6] by the reactions of α-thioaroyl-thiofor-mamide with trimethyl phosphite at room tempera-ture and in refl…  相似文献   

9.
The stirring of [ortho-(HC[triple bond]C)-C(5)H(4)N] with [nido-B(10)H(14)] in benzene affords [6,9-{ortho-(HC[triple bond]C)-C(5)H(4)N}(2)-arachno-B(10)H(12)] 1 in 93% yield. In the solid state, 1 has an extended complex three-dimensional structure involving intramolecular dihydrogen bonding, which accounts for its low solubility. Thermolysis of 1 gives the known [1-(ortho-C(5)H(4)N)-1,2-closo-C(2)B(10)H(11)] 2 (13%), together with new [micro-5(N),6(C)-(NC(5)H(4)-ortho-CH(2))-nido-6-CB(9)H(10)] 3 (0.4%), [micro-7(C),8(N)-(NC(5)H(4)-ortho-CH(2))-nido-7-CB(10)H(11)] (0.4%) , 4 binuclear [endo-6'-(closo-1,2-C(2)B(10)H(10))-micro-(1(C),exo-6'(N))-(ortho-C(5)H(4)N)-micro-(exo-8'(C),exo-9'(N))-(ortho-(CH(2)CH(2))-C(5)H(4)N)-arachno-B(10)H(10)] (0.5%) 5, and [exo-6(C)-endo-6(N)-(ortho-(CH[double bond]CH)-C(5)H(4)N)-exo-9(N)-(ortho-(HC[triple bond]C)-C(5)H(4)N)-arachno-B(10)H(11)] 6. An improved solvent-free route to 2 is also presented. This set of compounds features an increasing cluster incorporation of the ethynyl moiety, initially by an effective internal hydroboration, affording an arachno to nido and then a nido to arachno:closo sequence of cluster geometry. An alternative low-temperature route to internal hydroboration is demonstrated in the room temperature reaction of [closo-B(11)H(11)][N(n)Bu(4)](2) with CF(3)COOH and [ortho-(HC[triple bond]C)-C(5)H(4)N], which gives [micro-1(C),2(B)-[ortho-C(5)H(4)N-CH(2)]-closo-1-CB(11)H(10)] 7 (40%) in which one carbon atom is incorporated into the cluster; a similar reaction with [ortho-(N[triple bond]C)-C(5)H(4)N] affords [N(n)Bu(4)][7-(ortho-N[triple bond]C-C(5)H(4)N)-nido-B(11)H(12)], 8 (68%) and stirring [ortho-(N[triple bond]C)-C(5)H(4)N] with [nido-B(10)H(14)] quantitatively affords the cyano analogue of 1, [6,9-{ortho-(N[triple bond]C)-C(5)H(4)N}(2)-arachno-B(10)H(12)] 9. All compounds were characterised by single-crystal X-ray diffraction analysis and NMR spectroscopy.  相似文献   

10.
Deprotonation of the phosphamonocarbaborane, exo-6-R-arachno-6,7-PCB(8)H(12) (R = Ph 1a or Me 1b), yields exo-6-R-arachno-6,7-PCB(8)H(11)(-), which when reacted with appropriate transition-metal reagents affords new metallaphosphamonocarbaborane complexes in which the metals adopt endo-eta(1), exo-eta(1), eta(4), eta(5), or eta(6) coordination geometries bonded to the formal R-arachno-PCB(8)H(11)(-), R-arachno-PCB(8)H(10)(2-), R-arachno-PCB(8)H(9)(3-), or R-nido-PCB(8)H(9)(-) ligands. The reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with Mn(CO)(5)Br generated the eta(1)-sigma product exo-6-[Mn(CO)(5)]-endo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (2) having the [Mn(CO)(5)] fragment in the thermodynamically favored exo position at the P6 cage atom. On the other hand, reaction of 1a- with (eta(5)-C(5)H(5))Fe(CO)(2)I resulted in the formation of two products, an eta(1)-sigma complex endo-6-[(eta(5)-C(5)H(5))Fe(CO)(2)]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (3) having the (eta(5)-C(5)H(5))Fe(CO)(2) fragment attached at the endo-P6 position and an eta(6)-closo complex, 1-(eta(5)-C(5)H(5))-2-(C(6)H(5))-closo-1,2,3-FePCB(8)H(9) (4a). Rearrangement of the endo-compound 3 to its exo-isomer 5 was observed upon photolysis of 3. Synthesis of the methyl analogue of 4a, 1-(eta(5)-C(5)H(5))-2-CH(3)-closo-1,2,3-FePCB(8)H(9) (4b), along with a double-insertion product, 1-CH(3)-2,3-(eta(5)-C(5)H(5))(2)-2,3,1,7-Fe(2)PCB(8)H(9) (6), containing two iron atoms eta(5)-coordinated to a formal R-arachno-PCB(8)H(9)(3-), was achieved by reaction of exo-6-CH(3)-arachno-6,7-PCB(8)H(11)(-) (1b-) with FeCl(2) and Na(+)C(5)H(5)(-). Complexes 4a and 4b can be considered ferrocene analogues, in which an Fe(II) is sandwiched between C(5)H(5)(-) and 6-R-nido-6,9-PCB(8)H(9)(-) anions. Reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with cis-dichlorobis(triphenylphosphine)platinum (II) afforded two compounds, an eta(1)-sigma complex with the metal fragment again in the endo-P6 position, endo-6-[cis-(Ph(3)P)(2)PtCl]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (7) and an eta(4)-complex, 7-(C(6)H(5))-11-(Ph(3)P)(2)-nido-11,7,8-PtPCB(8)H(10) (8) containing the formal R-arachno-PCB(8)H(10)(2)(-) anion. The structures of compounds 2, 3, 4a, 4b, 6, 7, and 8 were crystallographically confirmed.  相似文献   

11.
1 INTRODUCTION The direct use of metallic samarium as the re-ducing agent in organic transformations has attractedthe attention of many organic chemists[1]. In our inves-tigations on the applications of metallic samarium inorganic synthesis, we have recently found that me-tallic samarium exhibits some extraordinary capa-bilities when DMF instead of traditional THF wasused as the reaction medium[2]. β,γ-Unsaturated car-bonyl moieties, known to exist in natural products,serve as versati…  相似文献   

12.
The reaction of cyanogen chloride with [1-(4-C(7)H(7))-12-(C(5)H(3)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (7) was found to yield two new C(5)-substituted carborane cluster-based compounds, [1-(4-C(7)H(7))-12-(C(5)H(2)-3-(CN)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (8) and [1-(4-C(7)H(7))-12-(C(5)H-2,4-(CN)(2)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (9). This cyano-substitution pattern is in contrast to the known substitution for the analogous organic quinarene[5.6.7] system. The observed unique cluster-based products may be understood by a combination of steric and electronic effects. Compounds 8 and 9 were characterized by complete multinuclear NMR, (1)H-(1)H COSY NMR, (1)H-(13)C HMQC NMR, FTIR, UV-Vis, IR, MS data and a single crystal analysis for 8 [X-ray data for 8: C(17)H(25)B(10)N, monoclinic, space group P2(1)/n with cell constants a = 8.6794(17) ?, b = 11.021(2) ?, c = 43.175(9) ?, β = 91.00(3)°, V = 4129.2(14) ?(3), Z = 8, R(1) = 0.0729, wR(2) = 0.1464].  相似文献   

13.
The oxidative addition of one equivalent of [Cp2V] (4) to the tetrayne ligand tBuC triple bond CC triple bond CC triple bond CC triple bond CtBu (5) gives the monometallic complex [Cp2V(3-4eta-tBuC triple bond C-C2-C triple bond CC triple bond CtBu)] (7). Compound 7 reacts further with a second equivalent of [Cp2V] to give the dimetallic complex [(Cp2V)2(1-2eta:7-8eta-tBuC2-C triple bond CC triple bond C-C2tBu)] (8), which involves a shift of the first coordinated [Cp2V] unit from the internal C3-C4 to the external C1-C2 positions on the alkynyl ligand. Compound 8 is also directly obtained by the addition of two equivalents of [Cp2V] to 5. Reversibly, reaction of 8 with 5 leads to 7. This exchange reaction between 7 and 8 by adding successively 5 and 4 has been monitored by EPR spectroscopy. By contrast, the oxidative addition of one or two equivalents of [Cp2V] to the tetrayne ligand PhC triple bond CC triple bond CC triple bond CC triple bond CPh (6) gives the homodimetallic complex [(Cp2V)2(1-2eta:7-8eta-PhC2-CC triple bond CC triple bond C-C2-Ph)] (9). Both monometallic and dimetallic complexes 7, 8, and 9 have been characterized by X-ray diffraction. Magnetic moment measurements for 8 and 9 from 300 to 4 K indicated a weak antiferromagnetic J exchange coupling of -12.5 and -4.1 cm(-1), respectively.  相似文献   

14.
The title compound (C22H18N2O3) has been synthesized by the reaction of 3,4-dimethoxybenzaldehyde,malononitrile and 1-naphthol in ethanol in the presence of piperidine,and its structure was characterized by elemental analysis,IR,1H NMR and X-ray single-crystal diffraction.The crystal belongs to monoclinic,space group C2/c with a=24.221(6),b=9.016(2),c=17.003(5)A,β=93.16(1)°,V=3707(2)A3,Mr=358.38,Z=8,Dc=1.284g/cm3,μ(MoKα)=0.087mm-1,F(000)=1504,the final R=0.0432 and wR=0.1085.X-ray analysis reveals that the atoms of C(1),C(2),C(3),C(4),C(5) and O(1) form a boat-form six-membered ring in which the C(1)-C(2)(1.349(3)A) is a C=C double bond.  相似文献   

15.
The synthesis of (5-oxoheptene-1E,3E-dienyl)-5,6-dihydro-2H-pyran-2-one has been performed in seven steps using four key steps: a ring-closing metathesis reaction to build up the unsaturated lactone, a Wittig reaction to control the C6-C7 (E) double bond, a cross-metathesis reaction to control the (E) double bond at C8-C9, and an enantioselective allyltitanation to control the absolute configuration at C5. Spectroscopic data (IR, MS, 1H, and 13C NMR) were identical to those of the natural compound except for the optical rotation, which led us to re-assign the absolute configuration of the natural product.  相似文献   

16.
A protected C(29)-C(51) subunit ((+)-38) of spongistatin 1 has been obtained. Key steps involve the aldol condensation of (3S, 4R)-3-methyl-7-[(p-methoxybenzyl)oxy]-4-[(triethylsilyl)oxy]octan- 2-o ne ((-)-6) with (tert-butyl)dimethylsilyl 4-deoxy-2, 3-di-O-(methoxymethyl)-4-methyl-6-O-(tert-butyl)dimethylsilyl)-bet a-D -glycero-L-gluco-heptodialdo-1,5-pyranoside ((+)-7) and a C-glycosidation of (4R,7R&S,E)-7, 8-dichloro-2-methylidene-1-(trimethylsilyl)oct-5-en-4-yl p-methoxybenzoate (16). Aldehyde (+)-7 was derived from (R)-3-benzyloxy-2-methylpropan-1-ol ((+)-10) in 13 formal steps but requiring the isolation of five intermediate products only. The longest linear synthetic scheme converts (+)-10 into (+)-38 in 2% overall yield (isolation of 11 intermediate products).  相似文献   

17.
trans—(η~5—C_5Me_5)_2Mo_2(μ_2—S)_2(t—O)_2[Ⅰ]和cis—(η~5—C_5Me_5)Mo_2(μ_2—O)_2(t—O)_2(Ⅱ]是由Mo(CO)_6和C_5(CH_3)_5H的反应产物(η~5—C_5Me_5)_2Mo_2(CO)_4与(CH_2)_3S反应中同时得到的。晶体[Ⅰ]属四方晶系,空间群为P4_2/n,单胞参数;a=b=16.317,c=8.463,V=2253.16,Z=4。晶体[Ⅱ]亦属四方晶系,空间群为P42_1c,单胞参数:a=b=12.101,c=15.425,V=2258.54,Z=4 [Ⅰ]和[Ⅱ]分子分别具有C_1—T和C_2—2对称性。如把C_5Me_5-看成具有理想的园柱体对称性,则它们分别具有C_(2h)—2/m和C_(2v)—mm2对称性。在[Ⅰ]中Mo_2(μ_2—S)_2为菱形平面结构,而[Ⅱ]中则畸变成“蝶式”结构。由两个钼原子之间的距离(2.902和2.808)可以看出钼一钼间作用属于单键的范围内。所以它们是具有金属单键的双钼金属簇的两个立体异构体。  相似文献   

18.
Diels-Alder reactions of (S)-2-(p-tolylsulfinyl)-1,4-benzoquinone (1a) with cyclic (cyclopentadiene and cyclohexadiene) and acyclic dienes (1-[(trimethylsilyl)oxy]-1,3-butadiene and trans-piperylene) under different thermal and Lewis acid conditions are reported. Chemoselectivity (reactions on C(2)-C(3) versus C(5)-C(6) double bonds) is mainly related to the cyclic (on C(5)-C(6)) or acyclic (on C(2)-C(3)) structure of the diene. The high pi-facial selectivity observed could be controlled by choosing adequate experimental conditions.  相似文献   

19.
1 INTRODUCTION Inorganic solid supports as catalysts resulting in higher selectivity, milder conditions and easier work-up has been reported as useful catalysts for many reactions [1~3]. Recently, we have reported the Knoevenagel condensation and some other reactions[4~6] catalyzed by KF-Al2O3. In this paper, we discussed the crystal structure of the title compound synthesized by the reaction of 2-cyano-3-(3,4-methylenedioxylphenyl)acrylonitrile and 5,5-dimethyl-1,3-cyclohexanedione in…  相似文献   

20.
The reaction of the complex [Au2Ag2(C6F5)4)N[triple bond]CCH3)2]n (1) with 1 equiv of CuCl in the presence of 1 equiv of pyrimidine ligand leads to the formation of the heteronuclear Au(I)-Cu(I) organometallic polymer [Cu{Au(C6F5)2}(N[triple bond]CCH3)(mu2-C4H4N2)]n (2) through a transmetalation reaction. Complex 2 displays unprecedented unsupported Au(I)...Cu(I) interactions of [Au(C6F5)2]- units with the acid Cu(I) sites in a [Cu(N[triple bond]CCH3)(mu2-pyrimidine)]n+(n) polymeric chain. Complex 2 has a rich photophysics in solution and in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号