首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The investigation of the glass transition in materials that become too viscous or are difficult to prepare in a solid compact form, is not straightforward using dynamic mechanical analysis, DMA. In this work, metallic pockets are used to envelop samples in order to resolve the loss factor peak, tan δ, in the region of Tg. Experiments with indium were carried out at different heating rates in order to correct the temperature in such isochronal measurements. The proof of concept of the utility of such methodology was done by investigating the glass transition dynamics of poly(d,l-lactic acid), PDLLA, a biodegradable amorphous polyester widely investigated for biomedical applications. The glass transition peaks obtained at scanning rates below 4 °C min?1 shifted to the same temperature region after correction. DMA tests on PDLLA at different frequencies allowed construction of a relaxation plot where the glass transition dynamics followed Vogel–Fulcher–Tamman–Hesse behaviour. Inclusion complexes, ICs, of PDLLA with α-cyclodextrin were obtained, exhibiting a very organized arrangement at the nano-scale level. DMA experiments on the ICs powder packed in the metallic pocket revealed a loss factor peak located at a higher temperature as compared with PDLLA, indicating that the segmental mobility of the polymer chains is highly restricted in this supra-molecular organization.  相似文献   

2.
W. Stark 《Polymer Testing》2013,32(2):231-239
Carbon fibre prepregs have found widespread application in lightweight constructions. They are based on a carbon fibre fabric impregnated with reactive epoxy resin. Measurements were carried out using commercially available prepreg material. For Dynamic Mechanical Analysis (DMA), a single cantilever measuring device was applied. The DMA results were refined by additional DSC measurements. The measurements were carried out with dynamic heating in the temperature range ?90 to 280 °C. The heating rates were 1 and 2 K/min, respectively. A glass transition of the uncured material (Tg0) near 1 °C, and crosslinking-induced vitrification and devitrification at the maximal glass transition temperature of the cured material (Tgmax) in the temperature range 220 to 230 °C were found. The activation energies for the glass transitions were determined using an Arrhenius plot. By detailed consideration of the influence of the frequency on the DMA data, indications for gelation were deduced.  相似文献   

3.
The influence of accelerated thermal treatment of thermosetting epoxy laminate on its glass transition temperature was studied. Lamplex® FR-4 glass fibre-reinforced epoxy laminate (used for printed circuit board manufacturing) was used in these experiments. The composite was exposed to thermal treatments at temperatures ranging from 170 °C to 200 °C for times ranging from 10 to 480 h. The glass transition temperature (Tg) was analysed via dynamic mechanical analysis (DMA). It has been proven that the glass transition temperature rapidly decreases in reaction to thermal stress. The obtained Tg data were used for Arrhenius plots for different critical temperatures (Tg-crit. = 105–120 °C). From their slopes (?Ea/R), the activation energy of the thermal degradation process was calculated as 75.5 kJ/mol. In addition to this main relaxation mechanism, DMA also recorded one smaller relaxation process in the most aged samples. Microscopic analysis of the sample structure showed the presence of pronounced small regions of degradation both on the surface and in the inner structure, which are probably the causes of microscopic delamination and the smaller relaxation process.  相似文献   

4.
Radiation-induced physical aging effects are studied in binary As x S100−x and As x Se100−x (30 ≤ x ≤ 42) glasses by conventional differential scanning calorimetry (DSC) method. It is shown that γ-irradiation (Co60 source, ~3 MGy dose) of glassy As x S100−x caused a measurable increase in glass transition temperature and endothermic peak area in the vicinity of glass transition region, which was associated with acceleration of structural relaxation processes in these materials. In contrast to sulfide glasses, the samples of As–Se family did not exhibit any significant changes in DSC curves after γ-irradiation. The observed difference in radiation-induced physical aging between sulfides and selenides was explained by more effective destruction-polymerization transformations and possible metastable defects formation in S-based glassy network.  相似文献   

5.
Dicyclopentadiene (DCPD) and 5‐ethylidene‐2‐norbornene (ENB) and their mixtures were analyzed after ring‐opening metathesis polymerization (ROMP) in the presence of Grubbs catalyst as potential candidate healing agents for self‐healing composite materials using two complementary methods, rotational dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Following isothermal DMA measurements at room temperature (RT = 25 °C) for 120 min, two consecutive dynamic temperature scan experiments were performed for each system. In the first dynamic temperature scans, there was an initial downward peak slightly above RT in the storage modulus versus temperature curve for samples with relatively slower reaction rates (i.e., DCPD and DCPD‐rich mixtures or low catalyst loadings) due to a combination of the glass transition followed by further residual reaction. However, no or negligible downward peaks were observed for the highly reactive ENB and ENB‐rich samples even at much lower catalyst loadings. Implications of the substantial decrease in storage modulus just above RT for the slowly reacting systems are discussed for healing of damage in composite materials at elevated temperatures. The maximum glass transition temperatures (Tg∞) from DMA of the fully cured samples were determined to be approximately 160 °C for DCPD and 120 °C for ENB, decreasing linearly with increased ENB in the blends. The glass transitions and further residual reactions above the glass transitions were confirmed by DSC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1771–1780, 2007  相似文献   

6.
The first experimental evidence of the existence of the rigid amorphous fraction (RAF) was reported by Menczel and Wunderlich for several semicrystalline polymers. It was observed that the hysteresis peak at the glass transition was absent when these polymers were heated much faster than they had previously been cooled. In the glass transition behavior of poly(ethylene terephthalate) (PET), the hysteresis peak gradually disappeared as the crystallinity increased. At the same time, it was noted that the ΔC p of higher crystallinity PET samples was much smaller than could be expected on the basis of the crystallinity calculated from the heat of fusion. It was also observed that this behavior was not unique to PET only, but is characteristic of most semicrystalline polymers: the sum of the crystallinity calculated from the heat of fusion and the amorphous content calculated from the ΔC p at the glass transition is much less than 100% (a typical difference is ~20–30%). This 20–30% difference was attributed to the existence of the “RAF”. The presence of the RAF also affected the unfreezing behavior of the “mobile (or traditional) amorphous fraction.” As a consequence, the phenomenon of the enthalpy relaxation diminished with increasing rigid amorphous content. It was suggested that the disappearance of the enthalpy relaxation was caused by the disappearance or drastic decrease of the time dependence of the glass transition. To check the validity of this suggestion, the glass transition had to be also measured on cooling in order to overlay it on the DSC curves measured on heating. However, before this overlaying work could be accomplished, the exact temperatures on cooling had to be determined since the temperature of the DSC instruments that time could not be calibrated on cooling using the usual low molecular weight standards due to the common phenomenon of supercooling. Therefore, a temperature calibration method needed to be developed for cooling DSC experiments utilizing high purity liquid crystals using the isotropic → nematic, the isotropic → cholesteric, and other liquid crystal → liquid crystal transitions. After the cooling calibration was accomplished, the cooling glass transition experiments indicated that the glass transition in semicrystalline polymers is not completely time independent, because its width depends on the ramp rate. However, it was shown that the time dependence is drastically reduced, and the midpoint of the glass transition seems to be constant which can explain the absence of the enthalpy relaxation. The work presented here has led to a number of studies showing the universality of the rigid amorphous phase for semicrystalline polymers as well as an ASTM standard for DSC cooling calibration.  相似文献   

7.
A series of waterborne hyperbranched polyurethane acrylate (WHUAs) ionomers used for ultraviolet curable waterborne coatings were synthesized. The average particle size of aqueous dispersion ranged between 48.2 and 75.3 nm at 0.05% concentration determined by laser light scattering. The effects of end group of WHUAs on rheological properties were investigated. WHUAs have much lower viscosity than EB2002, commercial linear waterborne polyurethane acrylate. Moreover, the glass transition temperature (Tg) evaluated by differential scanning calorimetry of samples showed that the influence of end capping by hard segment consisting of toluene diisocyanate–hydroxyethyl acrylate is significant due to the increase of crosslink density. All cured WHUA have higher glass transition temperatures than those of cured EB2002. The results of thermogravimetric analysis for cured WHUA films indicated good thermal stability with no appreciable weight loss until 200°C, and that an increase in the hard segment content provoked the increases in thermal degradation temperature. The activation energies were calculated by Flynn–Wall method to be 91.3, 114.3, and 139.7 kJ mol−1 for cured WHUA62, WHUA44, and WHUA26, with the individual ratios of 6:2, 4:4, and 2:6 for salt-like group to double bond at the terminals, compared with 81.1 kJ mol−1 of EB2002 in N2 atmosphere, respectively.  相似文献   

8.
A complex of Erbium perchloric acid coordinated with l-aspartic acid and imidazole, Er2(Asp)2(Im)8(ClO4)6·10H2O was synthesized for the first time. It was characterized by IR and elements analysis. The heat capacity and thermodynamic properties of the complex were studied with an adiabatic calorimeter (AC) from 80 to 390 K and differential scanning calorimetry (DSC) from 100 to 300 K. Glass transition and phase transition were discovered at 220.45 and 246.15 K, respectively. The glass transition was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4− ions and the phase transition was attributed to the orientational order/disorder process of ClO4− ions. The thermodynamic functions [H T  − H 298.15] and [S T  − S 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC).  相似文献   

9.
Poly(2-methylpentamethylene terephthalamide) (Nylon M5T) is a new high temperature aromatic polyamide developed by Hoechst Celanese. In this paper thermal properties of Nylon M5T chips, as well as as-spun and drawn fibers were studied by DSC, DMA, hot stage microscopy and WAXS.T g of the fully amorphous Nylon M5T is 143°C when measured by DSC;T g increases with crystallinity to 151°C. The temperature dependence of the solid and melt specific heat capacities has also been determined. The heat capacity increase at the glass transition of the amorphous polymer is 103.9 J °C–1 mol–1.T g by DMA for the as-spun fiber is 155°C, for a drawn fiber is 180°C. Three secondary transitions were observed by DMA in addition to the glass transition. These correspond to a local mode relaxation of the methylene groups at –120°C, onset of rotation of the amide-groups at –65°C and the onset of the rotation of the phenylenegroups (at 63°C). The crystallinity of Nylon M5T strongly depends on the rate of cooling from the melt. The isothermal crystallization data are melt temperature dependent: two-dimensional crystallization takes place when the samples are crystallized from higher melt temperatures, and this phase changes into a spherulitic structure during cooling to room temperature. Spherulitic crystallization occurs when lower melt temperatures are used. This polymer has three crystal forms as indicated by DSC, DMA and WAXS data. The crystal to crystal transitions are clearly visible when amorphous samples are heated in the DSC, or the DMA curves of as-spun fibers are recorded. It is experimentally shown that a considerable melting of the lower temperature crystal forms takes place during the crystal to crystal transitions. The equilibrium melting point as measured by the Hoffman-Weeks method, has been determined to be 339°C.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthday  相似文献   

10.
11.
The thermo-optic characteristics of the transparent glass fabric composite and matrix resin have been investigated. The inorganic–organic hybrid materials modified with sulfur are synthesized as transparent matrix resin with the same refractive index and Abbe number as glass. The optical characteristics of the transparent composite relate to temperature due to the fact that the thermo-optic coefficient (dn/dT) for glass fiber (1.00 × 10−5K−1) is different to that of inorganic–organic hybrid materials (−1.99 × 10−4K−1). As the temperature increases, the transparent composite gradually becomes opaque and hazy due to the increased difference in the refractive index between the glass fiber and the matrix. The change in optical characteristics is reversible, meaning that the transparent composites can be used in for various applications in optical devices.  相似文献   

12.
Calorimetric study of Se85−x Te15Sn x (x = 0, 2, 4 and 6) glassy alloys have been performed using Differential Scanning Calorimetry (DSC) under non-isothermal conditions at four different heating rates (5, 10, 15 and 20 °C/min). The glass transition temperature and peak crystallization temperature are found to increase with increasing heating rate. It is remarkable to note that a second glass transition region is associated with second crystallization peak for Sn additive Se–Te investigated samples. Three approaches have been employed to study the glass transition region. The kinetic analysis for the first crystallization peak has been taken by three different methods. The glass transition activation energy, the activation energy of crystallization, and Avrami exponent (n) are found to be composition dependent. The crystallization ability is found to increase with increasing Sn content. From the experimental data, the temperature difference (T p − T g) is found to be maximum for Se83Te15Sn2 alloy, which indicates that this alloy is thermally more stable in the composition range under investigation.  相似文献   

13.
The melting and mixing enthalpy of the binary system nitrocellulose and N-nitrodiethanolamine dinitrate (DINA) was determined by DSC. The mixing enthalpy H maxM = 1.95 kJ mol−1 had maximum at mass fraction x wDINA=0.46. The influence of samples storing on glass and endothermic transitions were studied. The temperature range of glass transition broadened with x wDINA what proved the increase of samples heterogeneity. For x wDINA≤0.750 no influence of samples storing on the phase changes was observed. The heat capacity change decreased and temperature range of glass transition increased for x wDINA≤0.500 what indicated the reduction of glass phase fraction in studied samples.  相似文献   

14.
The epoxy resin/polyurethane semi-IPN was prepared and the glass transition behavior of the semi-IPN was discussed with DSC and DMA methods. The results show that the two glass transition temperatures (Tg) referring to epoxy resin and polyurethane respectively get closer. Between the two Tg there exists another Tg related to the interface between the two polymers. SEM indicates that this semi-IPN has a two-phase continuous structure which changes with different weight compositions. This is also proved by testing the Young's modulus. It is found that the IPN system has a cellular structure. Comparatively, the compatibility between the two polymers is the best when the weight ratio of EP/PU is 70/30. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Differential scanning calorimetry (DSC) of semicrystalline polymers   总被引:1,自引:0,他引:1  
Differential scanning calorimetry (DSC) is an effective analytical tool to characterize the physical properties of a polymer. DSC enables determination of melting, crystallization, and mesomorphic transition temperatures, and the corresponding enthalpy and entropy changes, and characterization of glass transition and other effects that show either changes in heat capacity or a latent heat. Calorimetry takes a special place among other methods. In addition to its simplicity and universality, the energy characteristics (heat capacity C P and its integral over temperature T—enthalpy H), measured via calorimetry, have a clear physical meaning even though sometimes interpretation may be difficult. With introduction of differential scanning calorimeters (DSC) in the early 1960s calorimetry became a standard tool in polymer science. The advantage of DSC compared with other calorimetric techniques lies in the broad dynamic range regarding heating and cooling rates, including isothermal and temperature-modulated operation. Today 12 orders of magnitude in scanning rate can be covered by combining different types of DSCs. Rates as low as 1 μK s−1 are possible and at the other extreme heating and cooling at 1 MK s−1 and higher is possible. The broad dynamic range is especially of interest for semicrystalline polymers because they are commonly far from equilibrium and phase transitions are strongly time (rate) dependent. Nevertheless, there are still several unsolved problems regarding calorimetry of polymers. I try to address a few of these, for example determination of baseline heat capacity, which is related to the problem of crystallinity determination by DSC, or the occurrence of multiple melting peaks. Possible solutions by using advanced calorimetric techniques, for example fast scanning and high frequency AC (temperature-modulated) calorimetry are discussed.  相似文献   

16.
Photo-initiated polymerisation of dimethacrylate oligomers provide an easy method for producing highly crosslinked polymer networks. The physical properties of the material are dependent on the polymerisation conversion value. The determination of this conversion value is quite difficult on the final product. The first step is to measure a characteristic temperature of the glass transition. The weakness of the DSC glass transition signal makes this measure unrealisable while the DMA tan peak is broad and weak. At the difference of these two thermal analysis techniques, TSDC gives an observable signal and a Tα temperature close to the glass transition temperature region. The bad sample preparation reproducibility observed was attributed to the high conversion rate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Glass transition temperature and tan delta (the ratio of loss modulus to storage modulus) are indispensable parameters for determining appropriate application range of ETFE foils. In this study, ETFE foils in terms of specimen number, material direction and thickness were investigated with dynamic mechanical analysis (DMA) over a temperature range of -70-100 °C at frequencies of 0.1, 1, and 10 Hz. Glass transition temperatures were obtained with storage modulus, loss modulus and tan delta curves. It is found that frequency effect on glass transition temperature was proportional and that frequency effect was more significant than material direction effect. Moreover, a comparison study showed that elastic modulus determined with quasi-static experiments was greater than storage modulus calculated with dynamic mechanical experiments. To propose suitable glass transition temperature ranges for engineering application, an approach to determine confidence interval based on statistical analysis was employed. The resulting intervals with confidence coefficient of 95% were 31.2–32.7 °C, 60.5–66.4 °C and 79.6–83.3 °C for storage modulus, loss modulus and tan delta, respectively. In general, this study could provide useful observations and values for evaluating dynamic mechanical properties of ETFE foils.  相似文献   

18.
Polymer composite materials were prepared from poly(ethylene terephthalate)–poly(trimethylene terephthalate) blends as the matrix and different microcrystalline cellulose (MCC) filler levels (0–40 wt%) using melt compounding followed by compression molding. The composites were analyzed using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The DSC results indicated that there is no consistent or significant influence of the MCC addition on the glass transition (T g), melting (T m), and crystallization temperature of the composites. With increasing MCC content, dynamic mechanical properties improved because of the reinforcing effect of the MCC. The tan δ peak values from the DMTA were not significantly changed as the MCC content increased. TG indicated that the onset temperature of rapid thermal degradation decreased with increasing MCC content. It was also found that the thermal stability of the composites slightly decreased as the MCC content increased.  相似文献   

19.
Resin injection repair is a common method to repair delamination damage in polymer matrix composites (PMCs). To repair high-temperature PMCs, the resin should have a very low viscosity, yet cure into a compatible adhesive with high temperature stability. Normally, thermosetting polymers with high glass transition temperatures (T g) are made from monomers with high room temperature viscosities. Among the high temperature resins, bisphenol E cyanate ester (BECy, 1,1’-bis(4-cyanatophenyl)ethane), is unique because it has an extremely low viscosity of 0.09–0.12 Pa s at room temperature yet polymerizes as a cross-linked thermoset with a high T g of 274°C. BECy monomer is cured via a trimerization reaction, without volatile products, to form the high T g amorphous network. In this study, the cure kinetics of BECy is investigated by differential scanning calorimetry (DSC). Both dynamic and isothermal experiments were carried out to obtain the kinetic parameters. An autocatalytic model was successfully used to model isothermal curing. The activation energy from the autocatalytic model is 60.3 kJ mol−1 and the total reaction order is about 2.4. The empirical DiBenedetto equation was used to evaluate the relationship between T g and conversion. The activation energy of BECy from the dynamic experiments is 66.7 kJ mol−1 based on Kissinger’s method, while isoconversional analysis shows the activation energy changes as the reaction progresses.  相似文献   

20.
Differential scanning calorimetry data at different heating rates (5, 10, 15 and 20 °C min−1) of Se70Te15In15 chalcogenide glass is reported and discussed. The crystallization mechanism is explained in terms of recent analyses developed for use under non-isothermal conditions. The value of Avrami exponent (n) indicates that the glassy Se70Te15In15 alloy has three-dimensional growth. The average values of the activation energy for glass transition, E g, and crystallization process, E c, are (154.16 ± 4.1) kJ mol−1 and (98.81 ± 18.1) kJ mol−1, respectively. The ease of glass formation has also been studied. The reduced glass transition temperature (T rg), Hruby’ parameter (K gl) and fragility index (F i) indicate that the prepared glass is obtained from a strong glass forming liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号