首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excess energy and deuteration dependence of the radiationless decay rate in “isolated” aromatic hydrocarbons (anthracene, 9,10-dimethylanthracene, phenanthrene and fluorene) suggest that S1→S0 internal conversion dominates over S1→T intersystem crossing for molecules with very large excess vibrational energies.  相似文献   

2.
Excess enthalpies of six binary mixtures of CH3 OD+CH3 OH, CH3 OD+CD3 OD, CD3 OD+CH3 OH, C2 D5 OD+C2 H5 OH, C2 D5 OD+C2 H5 OD, C2 H5 OD+C2 H5 OH have been determined over the whole range of mole fractions at 298.15 K in order to know the isotopic effect on hydrogen-bonding accurately, although there are many reports on the differences in the strength of hydrogen-bonding between OH and OD. All excess enthalpies measured are very small and endothermic. The mixtures of CH3 OD+ CH3 OH, and C2 D5 OD+C2 H5 OH showed the largest excess enthalpies among each methanol and ethanol mixtures. The difference of intermolecular interaction between OH and OD in methanol and ethanol was almost same value of (1.82±0.04) J mol-1 Excess enthalpies of 1,4-dimethylbenzene+1,3-dimethylbenzene and 1,4-dimethylbenzene+1,2-methylbenzene were measured by three different principle calorimeters at 298.15 K in order to know the precision of calorimetry for a small enthalpy change. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The specific fluorescence properties of morin (3,2′,4′,5,7‐pentahydroxyflavone) were studied in various CH3OH–H2O and CH3CN–H2O mixed solvents. Although the dihedral angle is large in the S0 state, morin has an almost planar molecular structure in the S1 state owing to the very low rotational energy barrier around the interring bond between B and the A, C ring. The excited state intramolecular proton transfer (ESIPT) at the S1 state cannot occur immediately after excitation, S1 → S0 fluorescence can be observed. Two conformers, Morin A and B have been known. At the CH3OH–H2O, Morin B will be the principal species but at the CH3CN–H2O, Morin A is the principal species. At the CH3OH–H2O, owing to the large Franck–Condon (FC) factor for S2 → S1 internal convernal (IC) and flexible molecular structure, only S1 → S0 fluorescence was exhibited. At the CH3CN–H2O, as the FC factor for S2 → S1 IC is small and molecular structure is rigid, S2 → S0 and S1 → S0 dual fluorescence was observed. This abnormal fluorescence property was further supported by the small pK1 value, effective delocalization of the lone pair electrons of C(2′)–OH to the A, C ring, and a theoretical calculation.  相似文献   

4.
The ability to use calculated OH frequencies to assign experimentally observed peaks in hydrogen bonded systems hinges on the accuracy of the calculation. Here we test the ability of several commonly employed model chemistries—HF, MP2, and several density functionals paired with the 6‐31+G(d) and 6‐311++G(d,p) basis sets—to calculate the interaction energy (De) and shift in OH stretch fundamental frequency on dimerization (δ(ν)) for the H2O → H2O, CH3OH → H2O, and H2O → CH3OH dimers (where for XY, X is the hydrogen bond donor and Y the acceptor). We quantify the error in De and δ(ν) by comparison to experiment and high level calculation and, using a simple model, evaluate how error in De propagates to δ(ν). We find that B3LYP and MPWB1K perform best of the density functional methods studied, that their accuracy in calculating δ(ν) is ≈ 30–50 cm?1 and that correcting for error in De does little to heighten agreement between the calculated and experimental δ(ν). Accuracy of calculated δ(ν) is also shown to vary as a function of hydrogen bond donor: while the PBE and TPSS functionals perform best in the calculation of δ(ν) for the CH3OH → H2O dimer their performance is relatively poor in describing H2O → H2O and H2O → CH3OH. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
The method of chemical trapping for formyl intermediates has been studied, with syngas conversion to ethanol over rhodium-based catalysts as the diagnostic reaction concerned, and CH3I as the trapping reagent. Two species of acetaldehyde, i.e., CH3CHO and CH3CDO, were produced in the trapping reaction following CO + 2D2 reaction. It was shown that the formation of CH3CHO in the trapping reaction resulted from dehydrogenation of CH3 from CH3I to give H, which induced the formation of CH3CHO in the presence of CO and CH3 So there may be two pathways for the formation of CH3CDO in the trapping reaction: one, methylation of DCO adspecies; the other, deuteration of CH3 CO formed by CO insertion into CH3 The catalyst surface was purged with Ar following CO + 2D2 reaction before the trapping reaction was performed. By means of this modified method of chemical trapping for formyl intermediates, CH3CDO was found to be mainly derived from the methylation of DCO adspecies. Accordingly, it could be concluded that formyl is a C1 intermediate in the syngas conversion to ethanol over rhodium-based catalysts.  相似文献   

6.
The decomposition of ethanol vapour induced by infrared radiation from a pulsed HF-laser has been studied as a function of pressure. At high pressures, above 10 torr, the main primary processes appear to be:C2H5OH → H2 + CH3CHO,C2H5OH → C2H4 + H2O,C2H5OH → CH3 + CH2OHin a ratio of 3:2:1 which is independent of pressure. At low pressures the process yielding C2H4 and H2O becomes dominant. The results suggest that the high pressure behaviour involves a “thermal” decomposition with collisional processes dominating, whereas at low pressures the decomposition is due to multiple photon absorption which at the lowest pressures approaches a collision-free unimolecular decomposition.  相似文献   

7.
Heats of reaction and barrier heights have been computed for H + CH2CH2 → C2H5, H + CH2O → CH3O, and H + CH2O → CH2OH using unrestricted Hartree-Fock and Møller–Plesset perturbation theory up to fourth order (with and without spin annihilation), using single-reference configuration interaction, and using multiconfiguration self-consistent field methods with 3-21G, 6-31G(d), 6-31G(d,p), and 6-311G(d,p) basis sets. The barrier height in all three reactions appears to be relatively insensitive to the basis sets, but the heats of reaction are affected by p-type polarization functions on hydrogen. Computation of the harmonic vibrational frequencies and infrared intensities with two sets of polarization functions on heavy atoms [6-31G(2d)] improves the agreement with experiment. The experimental barrier height for H + C2H4 (2.04 ± 0.08 kcal/mol) is overestimated by 7?9 kcal/mol at the MP2, MP3, and MP4 levels. MCSCF and CISD calculations lower the barrier height by approximately 4 kcal/mol relative to the MP4 calculations but are still almost 4 kcal/mol too high compared to experiment. Annihilation of the largest spin contaminant lowers the MP4SDTQ computed barrier height by 8?9 kcal/mol. For the hydrogen addition to formaldehyde, the same trends are observed. The overestimation of the barrier height with Møller-Plesset perdicted barrier heights for H + C2H4 → C2H5, H + CH2O → CH3O, and H + CH2O → CH2OH at the MP4SDTQ /6-31G(d) after spin annihilation are respectively 1.8, 4.6, and 10.5 kcal/mol.  相似文献   

8.
Ethanol, its deuterated derivatives (C2H5OD, C2D5OD) and fluoroethanols (CFH2CH2OH, CF3CH2OH) have been isolated in low temperature matrices and investigated in the far-infrared region. From the concentration dependency of the observed bands and from studies of the pure alcohols in the gaseous, liquid, and solid phase it was found that the hydrogen bond stretching frequencies νσ associated with the hydrogen bonded system OH?O appear in the 100 – 160 cm?1 range. At higher M/A ratios the OD(OD) torsion modes τOH are dominating and were identified in the 200 – 300 cm?1 region. The influence of various matrix materials like argon, krypton, xenon, nitrogen and methane on the low frequency spectra of ethanol have also been studied. It was found, that nitrogen and methane matrices produce significant changes in the far infrared spectra.  相似文献   

9.
The reaction C2H5 + O2 → C2H5O2 in glassy methanol-d4 and the H-atom abstraction by CH3, C2H5, and n-C4H9 radicals in C2H5OH + C2D5OH and CD3CH2OH + C2D5OH glassy mixtures have been studied by electron spin resonance. The analysis of the dependence of the reaction rates on the concentration of O2 (oxidation) and C2H5OH, CD3CH2OH (H-atom abstraction) has shown that the √t law is not conditioned by the existence of regions characterized by different rate constants.  相似文献   

10.
The two components of the dual phosphorescence of 1-indanone ( 1 ) and six related ketones ( 2–7 ) possess different excitation spectra exhibiting the vibrational progression characteristic of the S0 → S1 (n, π*) transition (shorter-lived emission) and two bands of the S0 → S2 and 3 (π,π*) 0–0 transitions, respectively. The most favorable intersystem crossing routes are S1 (n, π*) → T (n, π*) and S2,3 (π*) → T (π, π*). Internal conversion to S1 competes more effectively with S (π, π*) → T (π, π*) intersystem crossing only from higher vibrational levels of the S2 and S3 states.  相似文献   

11.
1H- and 2H-NMR spectra of water (H2O and D2O) and methanol (CH3OD and CD3OH) absorbed in cellulose triacetate films have been observed as a function of the angle θ between the film surface and the magnetic field. 1H-NMR signals of H2O and CH3OD are doublets and triplets due to dipole interactions, respectively. 2H-NMR signals of D2O, CD3OH, and CH3OD are doublets due to quadrupole splittings. The magnitudes of these splittings change depending on θ. The analysis of the angle-dependent patterns indicates that the motionally averaged axes of the dipole and the quadrupole moments orient in the direction perpendicular to the film surface. The alignment of water and/or methanol molecules originates from the film morphology, which is anisotropic in the perpendicular direction. From the angle dependence of the chemical shift, the volume diamagnetic susceptibility of the film is estimated to be 0.44 ppm.  相似文献   

12.
The chromatographic performance of the deuterated solvents, CD3OD and D2O, has been investigated in reversed-phase micro high performance liquid chromatography. The chromatographic performance of CD3OD is only slightly superior to that of CH3OH. However, the performance of D2 is significantly superior to that of H2O, separation of aromatics being improved by about 30%. D2 is a particularly powerful solvent for the separation iof deuterated and non-deuterated compounds.  相似文献   

13.
The nonradiative decay rate knr. of some indole derivatives has been measured as a function of temperature in three solvents : n-heptane, methanol and water. A temperature-independent component (attributed to S1 → T1 intersystem crossing) and a temperature-dependent component (attributed to S1 → S0 internal conversion) are present in all case. In aqueous solutions, our results indicate the existence of a second temperature-dependent process which can be identified with photoionization.  相似文献   

14.
A potentiometric method using a glass electrode has been applied to determination of ionization constants for deuterium oxide (D2O) in binary mixtures of D2O with dioxane, tetrahydrofuran, acetone, dimethylsulfoxide, CH3CH2OD, and CH3OD at 25°C. The results are compared with values of ionization constants for H2O obtained previously in the corresponding H2O-organic mixtures, and the isotope effect is shown to be small. Further calculations with the D2O results show that the first five solvents mentioned above are neither appreciably acidic nor basic in D2O solution, but that CH3OD shows slightly acidic behavior (pKa=16.0±0.3).  相似文献   

15.
Densities of H/D-isotopomers mixtures of water (H2O, D2O) and methanol (CH3OH, CD3OH, CH3OD, and CD3OD) over the full range of compositions were measured at 5, 15, 25, 35, and 45°C. Results have been used to calculate molar volumes, excess molar volumes, apparent molar volumes, and isotope effects of the mixtures. The volumetric properties are discussed in terms of the structural changes in water-methanol solutions under the influence of isotope substitution.  相似文献   

16.
The identification of an OHstretch/CHstretch combination band in the near infrared (n.i.r.) spectrum of ethanol is based on comparison of the calculated positions of overtone and combination bands with the n.i.r. spectra of C2H5OH, C2H5OD, CH3OH and CH3OD.  相似文献   

17.
A detailed energy-resolved study of the fragmentation of CH2?CHCH(OH)CD2CD3 (1-d5) has been carried out using metastable ion studies and charge exchange techniques, combined with collision-induced dissociation studies to establish the structures of fragment ions. At low internal energies (metastable ions) the molecular ion of 1-d5 rearranges to the 3-pentanone structure and fragments by loss of C2H5 or C2D5 leading to the acyl structure, [CH3CH2C?O]+ or [CD3CD2C?O]+, for the fragment ion. However, with increasing internal energy of the molecular ion this rearrangement process decreases rapidly in importance and loss of C2D5 by direct cleavage, leading to [CH2?CHCH?OH]+, becomes the dominant fragmentation reaction. As a result the [C3H5O]+ ion seen in the electron impact mass spectrum of 1-penten-3-ol has predominantly the protonated acrolein structure.  相似文献   

18.
A recently described procedure for imidazole-catalyzed deacetylation of acetoxyflavones has been modified by effecting hydrolysis in a mixture of deuterium oxide and deuterioethanol (C2H5OD), or in deuterium oxide and deuteriomethanol (CH3OD). Application of the new procedure to monoacetoxyflavones has resulted in the monodeuteroxyflavone. 5-Deuteroxyflavone has been obtained also by hydrolysis of a rubidium salt in deuterium oxide. Imidazole-catalyzed hydrolysis of four diacetoxyflavones in a mixture of deuteriomethanol and deuterium oxide is described. Infrared spectral data are presented for the deuteration products, with emphasis on OD stretching and vibrational modes. Comparison of spectra of appropriate monohydroxyflavones and monodeuteroxyflavones permits assignment of δ (OH) bands in four hydroxyflavone spectra.  相似文献   

19.
The assumption that OH (OD) stretch vibrations in CsMnCl3-2H2O and -2D2O govern the rate of the 4T16A1 multiphonon transitions in Mn2+ is shown to account quantitatively for the observed 16-fold increase in the 4T1 lifetime upon replacing H2O by D2O. The argument is generalized to include other coordination compounds.  相似文献   

20.
The neutralization-reionization mass spectra of alkane radical ions indicate significant differences between the structures and geometries of alkane molecules and their molecular ions, confirming recent ab initio predictions. Ionic isomers that are indistinguishable by collisionally-activated dissociation because of easy interconversion can be characterized by neutralization-reionization if the corresponding neutrals show different reactivities, as is demonstrated for the [C2H5]+/C2H5˙ system and for [C2H4O2]+˙ isomers. For identification of mixtures of more than one neutral species, the relative efficiency for reionizing each neutral must be determined; e.g. the O2 reionization efficiency of ˙CH2OH radicals is ~4 times greater than that of CH3O˙. This information and reference reionization spectra of CH3O˙ and ˙CH2OH show that metastable or collisionally activated methyl acetate cations lose CH3O˙, not ˙CH2OH as previously reported; the newly-formed CH3O˙ undergoes partial (~20%) isomerization to ˙CH2OH in the ~10?6s before reionization. Similar results are obtained for [B(OCH3)3]+˙.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号