首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate constants for the reaction of O(3P) atoms with C3H4, C3H6 and NO(M = N2O) have been measured over the temperature range 300–392°K using a modulation-phase shift technique. The Arrhenius expressions obtained are:C2H4, k2 = 3.37 × 109 exp[?(1270 ± 200)/RT]liter mole?1 sec?1,C3H6, k2 = 2.08 × 109 exp[?(0 ± 300)/RT]liter mole?1 sec?1,NO(M = N2O), k1 = 9.6 × 109 exp[(900 ± 200/RT]liter2 mole?2 sec?1.These temperature dependencies of k2 are in good agreement with recent flash photolysis-resonance flourescence measurements, although lower than previous literature values.  相似文献   

2.
Absolute rate constants for the reaction of O(3P) atoms with n-butane (k2) and NO(M  Ar)(k3) have been determined over the temperature range 298–439 K using a flash photolysis-NO2 chemiluminescence technique. The Arrhenius expressions obtained were k2 = 2.5 × 10?11exp[-(4170 ± 300)/RT] cm3 molecule?1 s?1, k3 = 1.46 × 10?32 exp[940 ± 200)/ RT] cm6 molecule?2 s?1, with rate constants at room temperature of k2 = (2.2 ± 0.4) × 10?14 cm3 molecule?1 s?1 and k3 = (7.04 ± 0.70)×10?32 cm6 molecule?2 s?1. These rate constants are compared and discussed with literature values.  相似文献   

3.
The reaction of O2(1Δg) with HO2(X?) was studied in an isothermal flow reactor in the pressure range 7?p? 10.7 mbar at temperatures between 299?T? 423 K. H-atom production was observed in the reaction O2(1Δg) + HO22A′) - H(2S)+ 2O2 (3Σg?). The rate of this reaction (k1) is estimated to be k1 = (1 ± 0.5) × 1014 CM3 Mol?1 s?1. The implications of this reaction to recent determinations of the rate of the reaction H + O2(1Δg) are discussed.  相似文献   

4.
NH(A3Π → X3Σ?) and OH(A2Σ+ → X2Π) chemiluminescences from the reaction of CH(X2Π) with NO and O2, respectively, have been observed at room temperature. From the decay of such emissions we have measured the rate constants for these two reactions: kNO = (2.5 ± 0.5) × 10?10 and kO2 = (8 ± 3) × 10?11 cm3 molecule ?1 s?1, which are in agreement with previously reported rates determined by direct CH(X) detection using, laser-induced fluorescence. This indicates that a four-centered mechanism generating these excited species is operative in both reactions. The CH generation from 266 nm photolysis of CHBr3 has also been investigated via analysis of CH* emissions.  相似文献   

5.
Excited iodine atoms I(2P12) are formed by laser irradiation of C2F5I at 2950 Å. The mean radiative lifetime τ of these metastable atoms and their bimolecular rate constant k2 for deactivation in collissions with C2F5I were measured to be: τ = 108 ± 10 ms; k2 = (1.8 ± 0.1) × 10?17 cm3/molec s.  相似文献   

6.
The CH A 2ΔX2Π emission was observed in the flowing afterglow reaction of charged species of argon with CH4. Energetic considerations show that metastable argon ions, Ar+M(4D, 4F, 2F, 2G, are plausible candidates, although the contribution of Ar2+ cannot be completely excluded. The CH A 2ΔX2Π spectrum was analyzed; the ratio of vibrational populations for the υ′ = 0 and 1 states, Pvib(υ′ = 0), is estimated to be 0.56 ± 0.17, and the effective rotational temperatures are (3.0 ± 1.5) × 103 and (1.7 ± 0.4) × 103 K, respectively.  相似文献   

7.
The photodissociation of ketene, CH2CO(X?1A1) → CH21A1) + CO(X 1Σ+) has been observed at 337 nm, using a pulsed nitrogen laser. The CH21A1) radical has been detected by laser induced fluorescence with a tunable dye laser. A laser excitation spectrum has been obtained from CH21A1) over the wavelength interval from 588.9 to 595.6 nm in the Σ ← Π vibronic subband of the CH21A1); υ″ = 0, 0, 0?b? 1B1; υ′ = 0, 14, 0) transition. For the CH21A1 ; υ′= 0, 0, 0?X? 3B1; υ′' = 0, 0, 0) energy separation an upper limit of (6.3 ± 0.8) kcal/mole has been found. The radiative lifetime τ and the rate constant k for the removal of the 000 rotational level of the Σ(0, 14, 0) vibronic state have been measured directly. The values are τ = (4.2 ± 0.2) μs and k = (7.4 ± 0.3) × 10?10 cm3 molecule?1 s?1, respectively.  相似文献   

8.
Spin—orbit relaxation of I(52P12)(ΔE = 0.94 eV) by benzene-d6, has been studied at 297 K, using time-resolved atomic resonance fluorescence. A large isotope effect is observed, kC6H6 = (4.6 ± 0.7) × 10?13 cm3 molecule?1 s?1, and kC6D6 = (9.9 ± 1.0) × 10?15 cm3 molecule?1 s?1, despite evidence that formation of a bound collision complex may contribute to the quenching mechanism. The roles of resonant energy transfer channels, Franck—Condon factors and the density of final states, in the quenching process, are discussed.  相似文献   

9.
The rate constants for the reactions OH(X2Π, ν = O) + NH3k1 H2O + NH2 and OH(X2Π, ν = O) + O3k2 → HO2 + O2 were measured at 298°K by the flash photolysis resonance fluorescence technique. The values of the rate constants thus obtained are K1 = (4.1 ± 0.6) × 10?14 and k2 = (6.5 ± 1.0) × 10?14 in units of cm3 molecule ?1 sec1. The results are discussed in terms of understanding the dynamics of the perturbed stratosphere.  相似文献   

10.
Quenching of O(1D2) by COF2 has been investigated by time-resolved resonance fluorescence monitoring of the product O(3PJ) following 248 nm pulsed laser photolysis of O3. The rate constant for total removal of O(1D2) by COF2 is (7.4 ± 1.2) × 10?11 cm3 molecule?1 s?1. 71 ± 7% of the quenching interactions result in formation of O(3PJ).  相似文献   

11.
The laser flash photolysis of ozone at ≈ 6000 Å has been used to generate a clean kinetic source of ground state atomic oxygen, O(3P). The decay of O(3P) due to reaction with O3 was monitored via resonance fluorescence at 1300 Å, under static reaction cell conditions. Over the temperature range of 220–353°K, the bimolecular rate constant, k1, could be expressed in Arrhenius form as: k1 = (2.02 ± 0.19) × 10?11 exp[-(4522 ± 210 kcal/mole)/RT]. Units are in cm3molec?1 sec-1. A comparison of the results from this work with other recent investigations, indicates that the reliability of k1 is now probably as good as 10–15% over nearly 300 degrees.  相似文献   

12.
Rate coefficients for the collisional quenching of O2*(1Δg) by NO and CO2 at 2–8 torr and 300 K have been determined. kNO = (2.48 ± 0.23) × 10?17 cm3 molecule?1 s?1 and
= (2.56 ± 0.12) × 10?18 cm3 molecule?1 s?1.  相似文献   

13.
Lifetimes have been measured for the Σ and Π vibronic Ã2A1 states of H2S+ by studying the decay curves of the Ã2A1 (0, υ′2, 0) → X? 2B1 (0, υ″2, 0) emission bands. The vibronic Ã2A1 states are produced via excitation of H2S molecules by 150 eV electrons. The Σ sublevels 1 ? υ′2 ? 7 and the Π sublevels 3 ? υ′2 ? 6 have been considered. Predissociation occurs in the Σ sublevels for υ′2 ? 7 and in the Π sublevels for υ′2 ? 6. The obtained radiative lifetimes for the non-predissociated Σ and Π sublevels are around 4.2(±0.4) × 10?6 s and 5.6(±0.5) × 10?6 s respectively. For the predissociated Σ(0, 7, 0) and Π(0, 6, 0) levels the corresponding lifetimes are 2.3(±0.3) × 10?6 s and 1.6(±0.3) × 10?6 s respectively. The rate constant for collisional deactivation (quenching) of the vibronic Ã2A1 states by H2S molecules was found to equal 2.3(±0.3) × 10?9 cm3 mol?1 s?1.  相似文献   

14.
The collisional behaviour of electronically excited silicon atoms in the 3p2(1S0) state, 1.909 eV above the 3p2(3P0) ground state, is investigated by time-resolved attenuation of atomic resonance radiation at λ = 390.53 nm (4s(1Po1)←3p2 (1S0)). The optically metastable Si(31S0) atoms were generated by the repetitive pulsed irradiation of SiCl4 and their decay monitored in the presence of added gases. Absolute quenching rate constants (kQ, cm3 molecule?1 s?1, 300 K) are reported for the following collision partners: He (?1.3 × 10?15), SiCl4 ((9.1 ± 1.4) × 10?11), O2 ((1.5 ± 0.2) × 10?11) and N2O ((4.3 ± 0.4) × 10?11). The results for O2 and N2O are compared with analogous data reported hitherto for Si(3p2(3PJ)) and with those for the other np2(1S0) states of the group IV atoms C, Ge, Sn and Pb. The rate data for the silicon atoms are considered in terms of the nature of the potential surfaces arising from symmetry arguments based on the weak spin orbit coupling approximation.  相似文献   

15.
The rates of decay of O(3P) atoms in H2/CO/N2 mixtures in a discharge flow system have been measured, using O + CO chemiluminescence. The mechanism is: O + H2 → OH + H (1), O + OH → O2 + H (2), CO + OH → CO2 + H (3). At 425 K, k2/k3 = 260 ± 20; literature values of k3 combine to yield k2 = (2.65 ± 0.52) × 1010 dm3 mol?1 s?1.  相似文献   

16.
The relative oscillator strength of the A 2Hi → B 2Σ+ transition has been measured by comparing the laser-induced fluorescence signal from excitation of a known distribution of CN A 2Hi and CN B 2Σ+ produced by the photodissociation of cyanogen at 158 nm. The oscillator strength of the A 2Hi → B 2Σ+ transition is 0.011 ± 0.006 times that of the X 2Σ+ → B 2Σ+ system. This leads to a value of (4.0 ± 2.2) × 10?4 for the band oscillator strength.  相似文献   

17.
Rate coefficients for collisional removal of O(1D) by six atmospheric gases have been measured by monitoring the appearance of O(3P) following photolytic production of O(1D). The measured values, kM±2σ, in units of 10?11 cm?3 molecule ?1 s?1 are kO3 = 22.8±2.3, kN2 = 2.52 ± 0.25, kCO2 = 10.4 ± 1.0,kH2O 195± 2.0, kN2O = 11.7 ± 1.2, and kH2, = 11.8±1.2.  相似文献   

18.
Energy-transfer reactions between He(2 3S) and Ne(3P0.2) metastable atoms and PN radicals have been investigated by emission spectroscopy. Thirteen new PN+ (B 1Σ+ ?X 2Σ+) emission bands were found in addition to eight previously identified bands in the range 305–395 nm. From these observed band-head wavelengths, the following molecular constants were obtained for the X and B states of PN+ : PN+ (X): ωc = 1306 ± 3 cm?1, ωcxc = 7.9 ± 0.7 cm?1, PN? (B): Tc = 31354 ± 6 cm?1, ωc = 719 ± 3 cm?1, ωcxc = 1.6 ± 0.7 cm?1. The PN+ (B) state vibrational population was estimated from the emission intensities and the calculated Morse Franck—Condon (FC) factors for the PN+ (B–X) transition. Both the results obtained by He(2 3S) and Ne(3P0.2) Penning ionization shifted to lower vibrational levels in comparison with the calculated FC factors for vertical PN(X) → PN+ (B) ionization. Besides PN+ (B–X) emission, unidentified bands were observed in the 231–236 nm region in the helium afterglow, probably originating from PN or PN?.  相似文献   

19.
H.F. Rexroat  N.S. Rowan 《Polyhedron》1985,4(8):1357-1363
trans-[Co(en)2(SO3)(H2O)]+ reacts with imidazole (ImH) and imidazole containing ligands (L) to form trans-[Co(en)2(SO3)L]+ in the pH range 6.0–9.0. The complex seems to react both in the hydroxy and in the aquo form. The rate constant for the reaction of imidazole with the aquo form is 6.0±0.7 and 4±1M?1s?1 for the reaction with the hydroxy form at 25°C. The apparent equilibrium constant for formation of the imidazole complex at pH 7 is consistent with the value of 3 x 102 measured previously. Appreciable amounts of complex form only in the pH 6–9 range. Above pH 9 NMR spectra show that even the immediate products are different. In aged solutions at all pHs other products form.  相似文献   

20.
Using the linear dependence of the ratio of direct and indirect integrated rotational line fluorescence on the inverse. Ar pressure, we obtain more accurate rate constants for rotational relaxation. k = (91.3 ± 1.9) × 103 Pa?1 s?1 and for vibrational plus electronic relaxation: k = (21.0 ± 0.9) × 103 Pa?1 s?1 of cw-laser-excited BaO(A 1Σ, ν′ = 8, J′= 49) in collision with Ar. The experiments were performed on BaO produced in a gas-flow system using oxidants N2O, O2 and CO2 at variable argon pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号