首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of all‐trans‐retinal (all‐trans‐RAL), reactive vitamin A aldehyde, is one of the key factors in initiating retinal photodamage. This photodamage is characterized by progressive retinal cell death evoked by light exposure in both an acute and chronic fashion. Photoactivated rhodopsin releases all‐trans‐RAL, which is subsequently transported by ATP‐binding cassette transporter 4 and reduced to all‐trans‐retinol by all‐trans‐retinol dehydrogenases located in photoreceptor cells. Any interruptions in the clearing of all‐trans‐RAL in the photoreceptors can cause an accumulation of this reactive aldehyde and its toxic condensation products. This accumulation may result in the manifestation of retinal dystrophy including human retinal degenerative diseases such as Stargardt’s disease and age‐related macular degeneration. Herein, we discuss the mechanisms of all‐trans‐RAL clearance in photoreceptor cells by sequential enzymatic reactions, the visual (retinoid) cycle, and potential molecular pathways of retinal photodamage. We also review recent imaging technologies to monitor retinal health status as well as novel therapeutic strategies preventing all‐trans‐RAL‐associated retinal photodamage.  相似文献   

2.
All‐trans‐retinal (AtRal) can accumulate in the retina as a result of excessive exposure to light. The purpose of this study was to compare cytotoxicity of AtRal and photodegraded AtRal (dAtRal) on cultured human retinal pigment epithelial cells in dark and upon exposure to visible light. AtRal was degraded by exposure to visible light. Cytotoxicity was monitored by imaging of cell morphology, propidium iodide staining of cells with permeable plasma membrane and measurements of reductive activity of cells. Generation of singlet oxygen photosensitized by AtRal and dAtRal was monitored by time‐resolved measurements of characteristic singlet oxygen phosphorescence. Photodegradation of AtRal resulted in a decrease in absorption of visible light and accumulation of the degradation products with absorption maximum at ~330 nm. Toxicity of dAtRal was concentration‐dependent and was greater during irradiation with visible light than in dark. DAtRal was more cytotoxic than AtRal both in dark and during exposure to visible light. Photochemical properties of dAtRal indicate that it may be responsible for the maximum in the action spectra of retinal photodamage recorded in animals. In conclusion, photodegradation products of AtRal may impose a significant threat to the retina and therefore their roles in retinal pathology need to be explored.  相似文献   

3.
Solid‐state NMR spectroscopy gives a powerful avenue for investigating G protein‐coupled receptors and other integral membrane proteins in a native‐like environment. This article reviews the use of solid‐state 2H NMR to study the retinal cofactor of rhodopsin in the dark state as well as the meta I and meta II photointermediates. Site‐specific 2H NMR labels have been introduced into three regions (methyl groups) of retinal that are crucially important for the photochemical function of rhodopsin. Despite its phenomenal stability 2H NMR spectroscopy indicates retinal undergoes rapid fluctuations within the protein binding cavity. The spectral lineshapes reveal the methyl groups spin rapidly about their three‐fold (C3) axes with an order parameter for the off‐axial motion of For the dark state, the 2H NMR structure of 11‐cis‐retinal manifests torsional twisting of both the polyene chain and the β‐ionone ring due to steric interactions of the ligand and the protein. Retinal is accommodated within the rhodopsin binding pocket with a negative pretwist about the C11=C12 double bond. Conformational distortion explains its rapid photochemistry and reveals the trajectory of the 11‐cis to trans isomerization. In addition, 2H NMR has been applied to study the retinylidene dynamics in the dark and light‐activated states. Upon isomerization there are drastic changes in the mobility of all three methyl groups. The relaxation data support an activation mechanism whereby the β‐ionone ring of retinal stays in nearly the same environment, without a large displacement of the ligand. Interactions of the β‐ionone ring and the retinylidene Schiff base with the protein transmit the force of the retinal isomerization. Solid‐state 2H NMR thus provides information about the flow of energy that triggers changes in hydrogen‐bonding networks and helix movements in the activation mechanism of the photoreceptor.  相似文献   

4.
Glu194 is a residue located at the end of F helix on the extracellular side of the light‐induced proton pump bacteriorhodopsin (BR). Currently, it is well recognized that Glu194 and Glu204 residues, along with water clusters, constitute the proton release group of BR. Here we report that the replacement of Glu194 for Gln affects not only the photocycle of the protein but also has tremendous effect on the all‐trans to 13‐cis thermal isomerization. We studied the pH dependence of the dark adaptation of the E194Q mutant and performed HPLC analysis of the isomer compositions of the light‐ and partially dark‐adapted states of the mutant at several pH values. Our data confirmed that E194Q exhibits extremely slow dark adaptation over a wide range of pH. HPLC data showed that a significantly larger concentration of all‐trans isomer was present in the samples of the E194Q mutant even after prolonged dark adaptation. After 14 days in the dark the 13‐cis to all‐trans ratio was 1:3 in the mutant, compared to 2:1 in the wild type. These data clearly indicate the involvement of Glu194 in control of the rate of all‐trans to 13‐cis thermal isomerization.  相似文献   

5.
We previously reported that low‐level lysosomal photodamage enhanced the efficacy of subsequent mitochondrial photodamage, resulting in a substantial promotion of apoptotic cell death. We now extend our analysis of the sequential PDT protocol to include two additional lysosomal‐targeting photosensitizers. These agents, because of enhanced permeability, are more potent than the agent (N‐aspartyl chlorin E6, NPe6) used in the initial study. Addition of the cell‐permeable cysteine protease inhibitor E‐64d and calcium chelator BAPTA‐AM almost completely suppressed sequential PDT‐induced loss of mitochondrial membrane potential and activation of procaspases‐3 and ‐7. These inhibitors did not, however, suppress the proapoptotic effect of a BH3 mimetic or mitochondrial photodamage. Knockdowns of ATG7 or ATG5, proteins normally associated with autophagy, suppressed photodamage induced by the sequential PDT protocol. These effects appear to be independent of the autophagic process as pharmacological inhibition of autophagy offered no such protection. Effects of ATG7 and ATG5 knockdowns may reflect the role that ATG7 plays in regulating lysosome permeability, and the likelihood that a proteolytic fragment of ATG5 amplifies mitochondrial proapoptotic processes. Our results suggest that low‐dose photodamage that sequentially targets lysosomes and mitochondria may offer significant advantages over the use of single photosensitizers.  相似文献   

6.
Visible light (360–760 nm) entering the eye impinges on the many ganglion cell mitochondria in the non‐myelinated part of their axons. The same light also disrupts isolated mitochondrial function in vitro and kills cells in culture with the blue light component being particularly lethal whereas red light has little effect. Significantly, a defined light insult only affects the survival of fibroblasts in vitro that contain functional mitochondria supporting the view that mitochondrial photosensitizers are influenced by light. Moreover, a blue light insult to cells in culture causes a change in mitochondrial structure and membrane potential and results in a release of cytochrome c. Blue light also causes an alteration in mitochondria located components of the OXPHOS (oxidative phosphorylation system). Complexes III and IV as well as complex V are significantly upregulated whereas complexes I and II are slightly but significantly up‐ and downregulated, respectively. Also, blue light causes Dexras1 and reactive oxygen species to be upregulated and for mitochondrial located apoptosis‐inducing factor to be activated. A blue light detrimental insult to cells in culture does not involve the activation of caspases but is known to be attenuated by necrostatin‐1, typical of a death mechanism named necroptosis.  相似文献   

7.
All‐trans retinal is a potent photosensitizer that is released in photoreceptor outer segments by the photoactivated visual pigment following the detection of light. Photoreceptor outer segments also contain high concentrations of polyunsaturated fatty acids, and are thus particularly susceptible to oxidative damage such as that initiated by light via a photosensitizer. Upon its release, all‐trans retinal is reduced within the outer segment to all‐trans retinol, through a reaction requiring metabolic input in the form of NADPH. The phototoxic potential of physiologically generated all‐trans retinal was examined in single living rod photoreceptors obtained from frog (Rana pipiens) retinas. Light‐induced oxidation was measured with fluorescence imaging using an oxidation‐sensitive indicator dye from the shift in fluorescence between the intact and oxidized forms. Light‐induced oxidation was highest in metabolically compromised rod outer segments following photoactivation of the visual pigment rhodopsin, and after a time interval, sufficiently long to ensure the release of all‐trans retinal. Furthermore, light‐induced oxidation increased with the concentration of exogenously added all‐trans retinal. The results show that the all‐trans retinal generated during the detection of light can mediate light‐induced oxidation. Its removal through reduction to all‐trans retinol protects photoreceptor outer segments against light‐induced oxidative damage.  相似文献   

8.
Delayed Oxidative Photodamage induced by Photodynamic Therapy   总被引:1,自引:1,他引:0  
Abstract— Apoptotic DNA fragmentation was observed 60 min after photodynamic therapy of murine leukemia cells in culture, using either of two photosensitizers with predominantly lysosomal targets. When the radical scavengers trolox or α-tocopherol succinate were present during irradiation, the subsequent appearance of apoptotic cells was prevented, as was phototoxicity. Addition of either scavenger during the 60 min after irradiation provided only partial protection from apoptosis and phototoxicity; this protection was abolished if the addition was delayed for 10 min. These results are consistent with a model whereby long-persisting photoproducts continue the initiation of apoptosis for approximately 10 min after irradiation has ceased.  相似文献   

9.
The RNA-dependent RNA polymerase (RdRp) receptor is an attractive target for treating human norovirus (HNV). A computer-aided approach like e-pharmacophore, molecular docking, and single point energy calculations were performed on the compounds retrieved from the Development Therapeutics Program (DTP) AIDS Antiviral Screen Database to identify the antiviral agent that could target the HNV RdRp receptor. Induced-fit docking (IFD) results showed that compounds ZINC1617939, ZINC1642549, ZINC6425208, ZINC5887658 and ZINC32068149 bind with the residues in the active site-B of HNV RdRp receptor via hydrogen bonds, salt bridge, and electrostatic interactions. During the molecular dynamic simulations, compounds ZINC6425208, ZINC5887658 and ZINC32068149 displayed an unbalanced backbone conformation with HNV RdRp protein, while ZINC1617939 and ZINC1642549 maintained stability with the protein backbone when interacting with the residues. Hence, the two new concluding compounds discovered by the computational approach can be used as a chemotype to design promising antiviral agents aimed at HNV RdRp.  相似文献   

10.
Mineral supplements are often included in multivitamin preparations because of their beneficial effects on metabolism. In this study, we used an animal model of light‐induced retinal degeneration to test for photoreceptor cell protection by the essential trace element zinc. Rats were treated with various doses of zinc oxide and then exposed to intense visible light for as long as 8 h. Zinc treatment effectively prevented retinal light damage as determined by rhodopsin and retinal DNA recovery, histology and electrophoretic analysis of DNA damage and oxidized retinal proteins. Zinc oxide was particularly effective when given before light exposure and at doses two‐ to four‐fold higher than recommended by the age‐related eye disease study group. Treated rats exhibited higher serum and retinal pigment epithelial zinc levels and an altered retinal gene expression profile. Using an Ingenuity database, 512 genes with known functional annotations were found to be responsive to zinc supplementation, with 45% of these falling into a network related to cellular growth, proliferation, cell cycle and death. Although these data suggest an integrated and extensive regulatory response, zinc induced changes in gene expression also appear to enhance antioxidative capacity in retina and reduce oxidative damage arising from intense light exposure.  相似文献   

11.
为了寻找高效低毒的抗肿瘤候选化合物, 以去氢骆驼蓬碱为原料, 对β-咔啉环的2-,7-和9-位3个结构位点进行了结构改造, 合成了11个去氢骆驼蓬碱衍生物, 化合物的结构经核磁共振、 红外光谱、 质谱及元素分析确证. 采用四甲基偶氮唑盐(MTT)法初步测试了目标化合物体外抗肿瘤(Bel-7402, 786-0, BGC-823, A375, 769-P和MCF7)活性, 结果表明化合物4a, 4b, 8a和8b具有显著的体外抗肿瘤活性.  相似文献   

12.
Ultrashort femtosecond pulsed lasers may provide indispensable benefits for medical bioimaging and diagnosis, particularly for noninvasive biopsy. However, the ability of femtosecond laser irradiation to produce biodamage in the living body is still a concern. To solve this biosafety issue, results of theoretical estimations as well as the in vitro and in situ experiments on femtosecond biodamage should be verified by experimental studies conducted in vivo. Here, we analyzed photodamage produced by femtosecond (19, 42 and 100 fs) near‐infrared (NIR; ~800 nm) laser pulses with an average power of 5 and 15 mW in living undissected Drosophila larvae (in vivo). These experimental data on photodamage in vivo agree with the results of theoretical modeling of other groups. Femtosecond NIR laser pulses may affect the concentration of fluorescent biomolecules localized in mitochondria of the cells of living undissected Drosophila larva. Our findings confirm that the results of the mathematical models of femtosecond laser ionization process in living tissues may have a practical value for development of noninvasive biopsy based on the use of femtosecond pulses.  相似文献   

13.
Lipofuscin is a fluorescent material with significant phototoxic potential that accumulates with age in the retinal pigment epithelium (RPE) of the eye. It is thought to be a factor in retinal degeneration diseases. The most extensively characterized lipofuscin component, N‐retinylidene‐N‐retinylethanolamine (A2E), has been proposed to be a byproduct of reactions involving the visual pigment chromophore. To examine the impact of the visual pigment and photoreceptor cell type on lipofuscin accumulation, we analyzed the RPE from Nrl?/? mice of various ages for lipofuscin fluorescence and A2E levels. The photoreceptor cells of the Nrl?/? retina contain only cone‐like pigments, and produce cone‐like responses to photostimulation. The cone‐like nature of these cells was confirmed by the presence of RPE65. Lipofuscin was measured with fluorescence imaging, whereas A2E was quantified by UV/VIS absorbance spectroscopy coupled to HPLC. The identity of A2E was corroborated with tandem mass spectrometry. Lipofuscin and A2E accumulated with age, albeit to lower levels compared with wild type mice. The emission spectra of RPE lipofuscin granules from Nrl?/? mice were similar to those from wild type mice, with λmaxca 610 nm. These results demonstrate that cone visual pigments can contribute to the production of lipofuscin and A2E.  相似文献   

14.
A death mode termed paraptosis is initiated by photodamage to the endoplasmic reticulum (ER). This is characterized by an extensive pattern of cytoplasmic vacuole formation and leads to a gradual loss of cytoplasm and of viability. Many photosensitizers in clinical use target sub‐cellular organelles that include the ER and can, therefore, invoke paraptosis as well as apoptosis. In this study, we explore pathways to paraptosis in OVCAR‐5, an ovarian cancer cell line of human origin. At low PDT doses, the route to paraptosis follows the pattern that occurs after chemotherapy, that is, a pattern of vacuole formation that can be suppressed by MAPK antagonists or inhibition of new protein synthesis. At PDT doses clinically pertinent for tumor eradication, the pathway to paraptosis appears to be independent of these factors. In addition to morphologic changes, translocation of the nuclear protein HMGB1(high mobility group protein B1) to the cell periphery has been described as a potential marker for drug‐induced paraptosis. This occurs to only a very minor extent after a lethal PDT dose that targets the ER. It appears that a lethal level of ER photodamage can initiate a different pathway to paraptosis, perhaps associated with ER protein cross‐linking.  相似文献   

15.
Oxidative stress (OS) damage can cause significant injury to cells, which is related to the occurrence and development of many diseases. This pathological process is considered to be the first step to trigger the death of outer retinal neurons, which is related to the pathology of retinal degenerative diseases. Hydrogen sulfide (H2S) has recently received widespread attention as a physiological signal molecule and gas neuromodulator and plays an important role in regulating OS in eyes. In this article, we reviewed the OS responses and regulatory mechanisms of H2S and its donors as endogenous and exogenous regulators in retinal degenerative diseases. Understanding the relevant mechanisms will help to identify the therapeutic potential of H2S in retinal degenerative diseases.  相似文献   

16.
牛血清白蛋白的光损伤和光氧化机理   总被引:1,自引:0,他引:1  
运用激光闪光光解瞬态吸收技术, 在266 nm激光激励下, 研究了牛血清白蛋白(BSA)光损伤和被SO4-·单电子氧化的反应机理, 表征了反应过程中生成的自由基. 结果表明, 在266 nm激光照射下, BSA可同时发生光电离和光激发, 生成色氨酸阳离子自由基(Trp/NH+·), 由Trp/NH+·快速脱质子形成的色氨酸中性自由基(Trp/N·)及色氨酸三重激发态(3Trp*), 3Trp*再与酪氨酸(Tyr)发生分子内电子转移生成酪氨酸中性自由基(Tyr/O·). 在SO4-·单电子氧化的反应中, 借助减谱技术, 求得BSA中Tyr和色氨酸(Trp)自由基的表观生成速率常数, 但未发现分子内电子转移现象, 阐明了SO4-·自由基是通过与BSA中的Tyr和Trp发生电子转移反应来氧化BSA的, SO4-·氧化BSA的反应速率常数为1.51×1010 L·mol-1·s-1, 从而为进一步研究血清白蛋白的氧化还原代谢过程提供理论基础.  相似文献   

17.
18.
Prior studies demonstrated that a low level (LD10–15) of lysosomal photodamage can sensitize cells to the apoptotic death that results from subsequent mitochondrial photodamage. We have proposed that this process occurs via a calpain‐catalyzed cleavage of the autophagy‐associated protein ATG5 to form a proapoptotic fragment. In this report, we provide evidence for the postulated ATG5 cleavage and show that the sequential photodynamic therapy (PDT) protocol can also partly overcome the adverse effect of hypoxia on the initiation of apoptosis. While autophagy can offer cytoprotection after mitochondrial photodamage, this does not appear to apply when lysosomes are the target. This may account for the ability of very low PDT doses directed at lysosomes to evoke ATG5 cleavage. The resulting proapoptotic effect overcomes intrinsic cytoprotection from mitochondrial photodamage along with a further stimulation of phototoxicity.  相似文献   

19.
The radical S-adenosylmethinone(SAM)superfamily is currently the largest known enzyme superfamily that consists of more than 22000 members.[1]These enzymes utilize a[4Fe-4S]cluster to bind SAM and reductively cleave it to produce a highly reactive 5'-deoxyadenosyl(dAdo)radical.This alkyl radical abstracts a hydrogen atom from the substrate to produce 5'-deoxyadenosine(dAdoH)and a substrate radical,thereby initiating remarkably diverse reactions.[1]  相似文献   

20.
The photodynamic effects of the cationic TMPyP (meso‐tetrakis [N‐methyl‐4‐pyridyl]porphyrin) and the anionic TPPS4 (meso‐tetrakis[4‐sulfonatophenyl]porphyrin) against PC/CL phosphatidylcholine/cardiolipin (85/15%) membranes were probed to address the influence of phorphyrin binding on lipid damage. Electronic absorption spectroscopy and zeta potential measurements demonstrated that only TMPyP binds to PC/CL large unilamellar vesicles (LUVs). The photodamage after irradiation with visible light was analyzed by dosages of lipid peroxides (LOOH) and thiobarbituric reactive substance and by a contrast phase image of the giant unilamellar vesicles (GUVs). Damage to LUVs and GUVs promoted by TMPyP and TPPS4 were qualitatively and quantitatively different. The cationic porphyrin promoted damage more extensive and faster. The increase in LOOH was higher in the presence of D2O, and was impaired by sodium azide and sorbic acid. The effect of D2O was higher for TPPS4 as the photosensitizer. The use of DCFH demonstrated that liposomes prevent the photobleaching of TMPyP. The results are consistent with a more stable TMPyP that generates long‐lived singlet oxygen preferentially partitioned in the bilayer. Conversely, TPPS4 generates singlet oxygen in the bulk whose lifetime is increased in D2O. Therefore, the affinity of the porphyrin to the membrane modulates the rate, type and degree of lipid damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号