首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Analysis of prestressed mechanisms   总被引:3,自引:0,他引:3  
A new theory is presented for the matrix analysis of prestressed structural mechanisms made from pin-jointed bars. The response of a prestressed mechanism to any external action is decomposed into two almost separate parts, which correspond to extensional and inextensional modes. A matrix algorithm which treats these two modes separately is developed and tested. It is shown that the equilibrium requirements for the assembly, in its initial configuration as well as in deformed configurations which are obtained through infinitesimal inextensional displacements, can be fully described by a square equilibrium matrix. It is also shown that any set of extensional nodal displacements has to satisfy some equilibrium conditions as well as standard compatibility equations, and that the resulting system of linear equations defines a square kinematic matrix. Theoretical as well as experimental evidence supporting this approach is given in the paper ; two simple experiments which were of crucial importance in arriving at the equilibrium conditions on the extensional displacements are described.The interaction between the two modes of action of a prestressed mechanism is discussed, together with a rapidly converging iterative procedure to handle it. A study of the non-linear effect by which the self-stress level in a statically indeterminate assembly rapidly increases if an inextensional mode is excited, supported by further experimental results, concludes the paper. This work is relevant to the analysis of most cable systems, pneumatic domes, fabric roofs, and “Tensegrity” frameworks.  相似文献   

2.
Newton's second law is used to develop the nonlinear equations describing the extensional-flexural-flexural-torsional vibrations of slewing or rotating metallic and composite beams. Three consecutive Euler angles are used to relate the deformed and undeformed states. Because the twisting-related Euler angle is not an independent Lagrangian coordinate, twisting curvature is used to define the twist angle, and the resulting equations of motion are symmetric and independent of the rotation sequence of the Euler angles. The equations of motion are valid for extensional, inextensional, uniform and nonuniform, metallic and composite beams. The equations contain structural coupling terms and quadratic and cubic nonlinearities due to curvature and inertia. Some comparisons with other derivations are made, and the characteristics of the modeling are addressed. The second part of the paper will present a nonlinear analysis of a symmetric angle-ply graphite-epoxy beam exhibiting bending-twisting coupling and a two-to-one internal resonance.  相似文献   

3.
The nonlinear vibration of the inextensional beam on the elastic foundation under parametric resonance and two-to-one internal resonance is investigated. Considering the inextensional condition and the second-order moment of the subgrade reaction, the extended Hamilton principle is applied to derive the motion equation of the beam on elastic foundation. Then the multimodal discretization and the method of multiple scales are used to obtain the modulation equations. The nonlinear response is examined by means of the frequency- and force–response curves. It is shown that the two-mode solution is born when the single-mode solution undergoes the pitchfork bifurcation. The shooting method and numerical simulations are applied to investigate the dynamic solutions. Particular attention is placed on the effects of the cut-off frequency on the nonlinear response.  相似文献   

4.
The non-linear differential equations of motion, and boundary conditions, for Euler-Bernoulli beams able to experience flexure along two principal directions (and, thus, flexure in any direction in space), torsion and extension are formulated. The beam's material is assumed to be Hookean but its properties may vary along its span. The nonlinearities present in the differential equations include contributions from the curvature expression and from inertia terms. A set of differential equations with polynomial nonlinearities to cubic order, suitable for a perturbation analysis of the motion, is also developed and the validity of the inextensional approximation is assessed. The equations developed here reduce to those for an inextensional beam. In Part II of this paper, a specific example of application is analyzed and the results obtained are compared with those available in the literature where several non-linear terms have been neglected a priori.  相似文献   

5.
The nonlinear equations of motion derived in Part I are used to investigate the response of an inextensional, symmetric angle-ply graphite-epoxy beam to a harmonic base-excitation along the flapwise direction. The equations contain bending-twisting couplings and quadratic and cubic nonlinearities due to curvature and inertia. The analysis focuses on the case of primary resonance of the first flexural-torsional (flapwise-torsional) mode when its frequency is approximately one-half the frequency of the first out-of-plane flexural (chordwide) mode. A combination of the fundamental-matrix method and the method of multiple scales is used to derive four first-order ordinary-differential equations to describe the time variation of the amplitudes and phases of the interacting modes with damping, nonlinearity, and resonances. The eigenvalues of the Jacobian matrix of the modulation equations are used to determine the stability and bifurcations of their constant solutions, and Floquet theory is used to determine the stability and bifurcations of their limit-cycle solutions. Hopf bifurcations, symmetry-breaking bifurcations, period-multiplying sequences, and chaotic solutions of the modulation equations are studied. Chaotic solutions are identified from their frequency spectra, Poincaré sections, and Lyapunov's exponents. The results show that the beam motion may be nonplanar although the input force is planar. Nonplanar responses may be periodic, periodically modulated, or chaotically modulated motions.  相似文献   

6.
At grazing incidence of a flexural P-wave, or at grazing incidence of an extensional SV-wave, the wave motion vanishes in the case of an isotropic, elastic plate with traction-free surfaces. However, it is shown that the wave motion in these critical cases can be obtained from the evanescent Rayleigh-Lamb solution, by using d'Alembert's limiting procedure.  相似文献   

7.
Large amplitude, flexural oscillations of an inextensible, linearly elastic, pressurized ring are analyzed. Non-linear governing equations describing the planar motion of a thin rod curved in its undeformed state and subject to a distributed load applied normal to the neutral axis are developed using Hamilton's extended principle. The equations are specialized to study the behavior of a circular ring, and approximate solutions are obtained for a single mode response by a perturbation technique. Free, undamped oscillations and forced response of the ring near resonance are discussed. The influence of the magnitude of pressurization on the non-linear character of the motion is investigated.  相似文献   

8.
Rayleigh successfully analysed inextensional deformation of thin elastic shells by using a simple energy method. Subsequent workers seem to have been put off from using similar methods for shells which suffer extensional as well as bending deformations by the fact that the calculations get messy. In this paper we develop the kinematic relation between surface strains and changes in Gaussian curvature, and show that this is a very convenient tool for use in energy calculations. We give two examples of energy calculations for shells loaded by point forces. We find that once the energy expressions have been set up, certain analogies with simpler and already-solved problems become obvious. This leads to simple solutions. A feature of the method is that physically important quantities are not obscured, and distinct regimes of structural action are clearly delineated.  相似文献   

9.
The extensional flow behaviour of dilute aqueous solutions of a partiallyhy-drolyzed polyacrylamide and a surfactant were investigated in an extensional flow cell. The cell was designed such that fluids were subjected to steady shear before undergoing extensional motion in a converging channel. Extensional resistance was monitored by measuring the pressure drop through the channel. Such measurements were made over a range of extensional rates at fixed values of the upstream shear rate. Solutions of different concentrations were tested — up to 40 ppm of polyacrylamide and 450 ppm of surfactant — at various temperatures in the case of surfactant and for different types and amounts of salt in the case of polyacrylamide. Of the results, the more notable are that the extensional resistance of polyacrylamide solutions is affected much more by CaCl2 than by NaCl and that surfactant solutions do not exhibit extensional resistance unless they are pre-sheared.  相似文献   

10.
The steady tubeless-siphon (Fano) flow of 0.5% Dow Separan AP-30 in glycerine was experimentally studied. It was found that the inertial effects were generally not negligible, resulting in bulging and contraction of the column according to Coleman and Noll's predictions for the extension of a circular cylinder. In an attempt to develop a free-boundary isochoric simple extensional flow which does not have a surface geometry modification as a result of inertial effects, a general unsteady accelerating D'Almbert-type flow is investigated. It is shown that for the Coleman-and-Noll-type extension of a (perpetually) circular cylinder, a specific D'Almbert motion exists which does not have inertial induced surface-geometry changes. However, no D'Almbert-type Fano flow exists which meets this criterion. The interpretation of extensional viscosity is also discussed for these flows.  相似文献   

11.
This paper is concerned with the finite amplitude, free, planar oscillations of a thin elastic beam. By assuming the motion to be inextensional but at the same time recognizing the existence of a resultant normal force acting on each cross-section of the beam a system of governing equations is derived which is manageable but still meaningful. For the case of the simply-supported beam a finite difference, Galerkin, and (regular) perturbation solutions are explicitly obtained. The results are compared and discussed. In the course of obtaining the various solutions it is found that an additional simplification in the form of the governing equations is possible. This simplification turns out to be quite important from a general point of view of obtaining approximate analytical solutions.  相似文献   

12.
This paper presents a new perturbation method of analysis applicable to a class of geometrically non-linear problems of shells, plates, and membranes with translationally restrained edges. The perturbation parameter is a linear function of Poisson's ratio. The convergence of successive perturbations (i.e., approximations) is independent of the magnitudes of deflections. The method also offers a rational explanation of the efficacy of Berger's approximate equations, thus placing Berger's method on a firmer foundation while at the same time weakening his hypothesis of vanishing second membrane strain invariant in the strain energy integral. Several solutions and results are obtained for the purposes of illustration and discussion. Whenever possible, calculated values are compared with results obtained by other means.  相似文献   

13.
We present a variant of Newton’s method for computing travelling wave solutions to scalar bistable lattice differential equations. We prove that the method converges to a solution, obtain existence and uniqueness of solutions to such equations with a small second order term and study the limiting behaviour of such solutions as this second order term tends to zero. The robustness of the algorithm will be discussed using numerical examples. These results will also be used to illustrate phenomena like propagation failure, which are encountered when studying lattice differential equations. We finish by discussing the broad application range of the method and illustrate that higher dimensional systems exhibit richer behaviour than their scalar counterparts.  相似文献   

14.
Based on elasticity theory, various two-dimensional (2D) equations and solutions for extensional deformation have been deduced systematically and directly from the three-dimensional (3D) theory of thick rectangular plates by using the Papkovich–Neuber solution and the Lur’e method without ad hoc assumptions. These equations and solutions can be used to construct a refined theory of thick plates for extensional deformation. It is shown that the displacements and stresses of the plate can be represented by the displacements and transverse normal strain of the midplane. In the case of homogeneous boundary conditions, the exact solutions for the plate are derived, and the exact equations consist of three governing differential equations: the biharmonic equation, the shear equation, and the transcendental equation. With the present theory a solution of these can satisfy all the fundamental equations of 3D elasticity. Moreover, the refined theory of thick plate for bending deformation constructed by Cheng is improved, and some physical or mathematical explanations and proof are provided to support our justification. It is important to note that the refined theory is consistent with the decomposition theorem by Gregory. In the case of nonhomogeneous boundary conditions, the approximate governing differential equations and solutions for the plate are accurate up to the second-order terms with respect to plate thickness. The correctness of the stress assumptions in the classic plane-stress problems is revised. In an example it is shown that the exact or accurate solutions may be obtained by applying the refined theory deduced herein.  相似文献   

15.
The methods of finite-element analysis are applied to the problem of large deflection elastic-plastic dynamic responses of cylindrical shells to transient loading. Assumeddisplacement quadrilateral finite-elements of a cylindrical panel are used to idealize the cylindrical shell structure. The formulation is based upon the Principle of Virtual Work and D'Alembert's Principle. A direct numerical integration procedure is employed to solve the resulting equations of motion timewise. The present predicted dynamic responses of an explosively-loaded clamped cylindrical panel are compared with other independent predictions and with experimentally measured responses; very good agreement is observed.  相似文献   

16.
A Rayleigh–Liénard oscillator excited by a fundamentalresonance is investigated by using an asymptotic perturbation method based on Fourier expansion and time rescaling. Two first-order nonlinear ordinarydifferential equations governing the modulation of the amplitude andthe phase of solutions are derived. These equations are used todetermine steady-state responses and their stability. Excitationamplitude-response and frequency-response curves are shown and checkedby numerical integration. Dulac's criterion, the Poincaré–Bendixsontheorem, and energy considerations are used in order to study the existenceand characteristics of limit cycles of the two modulation equations. Alimit cycle corresponds to a modulated motion for the Rayleigh–Liénardoscillator. For small excitation amplitude, the analytical results arein excellent agreement with the numerical solutions. In certain caseswhen the excitation amplitude is very low, an approximate analyticsolution corresponding to a modulated motion can be obtained andnumerically checked. Moreover, if the excitation amplitude is increased,an infinite-period bifurcation occurs because the modulation periodlengthens and becomes infinite, while the modulation amplitude remainsfinite and suddenly the attractor settles down into a periodic motion.  相似文献   

17.
Ze-Ping Wang  C. T. Sun   《Wave Motion》2002,36(4):473-485
A continuum model including micro-inertia for heterogeneous materials under dynamic loading is proposed using a micro-mechanics method. The macro strain and stress are defined as the volume averages of the strain and stress fields in the representative volume element (RVE). The macro equations of motion are derived by using Hamilton’s principle together with the strain energy density and kinetic energy density involving the micro-inertia terms. The new macro equations of motion are used to study harmonic and transient wave propagation in layered media. Using a simple linear displacement field for the RVE, the dispersion curves obtained from the present model agree with the exact solutions very well for a range of wavelengths. The present model is also applied to analyze the transient response of layered media subjected to a triangular pulse loading. Comparison is made between the results of the present model and a finite element analysis.  相似文献   

18.
A simple perturbation approximation is proposed for describing flow behaviour of particles immersed in a uniform flow and an extensional flow of power-law fluids. The present solution for particles in a uniform flow field is in good agreement with the numerical solution in the literature. Theoretical predictions indicate that the effect of pseudoplasticity on flow around particles in an extensional flow field is small compared with that for particles in a uniform flow field.From the viewpoint of perturbation techniques, existing analytical solutions based on linearization of the equations of motion for particle in a power-law fluid are re-examined. Mass transfer to a power-law fluid from a particle is also discussed.  相似文献   

19.
Simultaneous measurements of extensional stresses and birefringence are rare, especially for polymer solutions. This paper reports such measurements using the filament stretch rheometer and a phase modulated birefringence system. Both the extensional viscosity and the birefringence increase monotonically with strain and reach a plateau. Estimates of this saturation value for birefringence, using Peterlin’s formula for birefringence of a fully extended polymer chain are in agreement with the experimental results. However, estimates of the saturation value of the extensional viscosity using Batchelor’s formula for suspensions of elongated fibres are much higher than observed. Reasons for the inability of the flow field to fully unravel the polymer chain are examined using published Brownian dynamics simulations. It is tentatively concluded that the polymer chain forms a folded structure. Such folded chains can exhibit saturation in birefringence even though the stress is less than that expected for a fully extended molecule.Simultaneous measurements of stress and birefringence during relaxation indicate that the birefringence decays much more slowly than the stress. The stress-birefringence data show a pronounced hysteresis as predicted by bead-rod models. The failure of the stress optic coefficient in strong flows is noted.Experiments were also performed wherein the strain was increased linearly with time, then held constant for a short period before being increased again. The response of the stress and birefringence in such experiments is dramatically different and can be traced to the different configurations obtained during stretching and relaxation. The results cast doubt on the appropriateness of pre-averaging the non-linear terms in constitutive equations.  相似文献   

20.
A linear thermoviscoelastic model for homogeneous, aging materials with memory is established. A system of integro-differential equations is obtained by using two motions (a one-dimensional motion and a shearing motion) for this model. Applying the group analysis method to the system of integro-differential equations, the admitted Lie group is determined. Using this admitted Lie group, invariant and partially invariant solutions are found. The present paper gives a first example of application of partially invariant solutions to integro-differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号