首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have calculated 64 points on the ground electronic state potential energy surface of the silyl radical (SiH3) using the MRD CI technique. This potential surface gives an inversion barrier of 1951 cm?1 and an equilibrium geometry of re = 1.480 Å and αe(HSiH) = 111.2°. Using the non-rigid invertor Hamiltonian with this potential we determine for SiH3 that ν1 = 2424 cm?1, ν2 = 778 cm?1, ν3 = 2106 cm?1, and ν4 = 976 cm?1; the inversion splitting is calculated to be 0.11 cm?1. Rotational constants and centrifugal distortion constants have also been calculated.  相似文献   

2.
Thermolysis of poly(diphenylene sulfophthalide) (PDSP) in the temperature range from 100 to 500 °C was studied by IR and UV-Vis spectroscopy and thermogravimetric analysis. A series of absorption bands in the IR spectrum of PDSP were assigned on the basis of the theoretical calculations of the IR spectrum of diphenyl sulfophthalide used as a model compound, in particular, νas(S=O) = 1352 cm?1, νs(S=O) = 1196 cm?1, ν(C-O) ~ 920 cm?1, ν(S-O) = 824 cm?1, and δ(SO2) = 576 cm?1. The sulfophthalide cycle (SPC) in PDSP decomposes at the thermolysis temperatures in a range of 260–400 °C. An analysis of the IR spectra of the thermolyzate and the quantum chemical calculations of the IR spectra of the model compounds confirmed the predominant formation of fluorenyl structures in the thermolyzed polymer. The changes in the UV-Vis spectra observed upon the thermolysis of thin films of PDSP (the hypsochromic shift of the long-wavelength absorption band from 271 to 263 nm and the appearance a shoulder at ~310 nm) and the results of TD-DFT calculations of the UV-Vis spectra of the model compounds are consistent with the hypothesis about the formation of fluorenyl structures. The general scheme of PDSP thermolysis at 260–400 °C was proposed in which the major process is the formation of fluorenyl fragments in macromolecules of the polymer due to the intramolecular ring closure in biradicals formed by the SPC cleavage.  相似文献   

3.
SCF closed shell calculations were performed to determine the equilibrium structure and vibrational frequencies of the O4 molecule by means of Payne's method and with the help of the molecule's symmetry coordinates. The equilibrium geometry corresponds to symmetry group D2d with R = 1.505 Å and h = 0.094 Å. The vibrational frequencies are: ν5(E) = 885.5 cm?1, ν3(B1) = 1051.9 cm?1, ν1(A1) = 1018.3 cm?1, ν4(B2) = 880.3 cm?1. The second vibrational coordinate (A1) corresponds to a double-well potential. The first vibrational levels were calculated by a variational method.  相似文献   

4.
Absorptions which appear near 1600 cm?1 on co-deposition at 14 K of Ar:CO2 mixtures with an alkali metal have been assigned to ν3 of an M+...CO2? ion pair, with an OCO valence angle near 130°. Molecular aggregates contribute significantly to the observed spectrum.  相似文献   

5.
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100–105 °C and 185–205 °C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot-stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH)·3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4·5H2O → arhbarite Cu2Mg(AsO4)(OH)3. HSRS inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm?1 assigned to the ν1 AsO4 3? symmetric stretching vibration and 801, 822, and 871 cm?1 assigned to the ν3 AsO4 3? (A1) antisymmetric stretching vibrations. A distinct band shift is observed upon heating to 275 °C. At 275 °C, the four Raman bands are resolved at 762, 810, 837, and 862 cm?1. Further heating results in the diminution of the intensity in the Raman spectra, and this is attributed to sublimation of the arsenate mineral. HSRS is the most useful technique for studying the thermal stability of minerals, especially when only very small amounts of mineral are available.  相似文献   

6.
Raman spectra of coquandite Sb6O8(SO4)·(H2O) were studied, and related to the structure of the mineral. Raman bands observed at 970, 990 and 1007 cm?1 and a series of overlapping bands are observed at 1072, 1100, 1151 and 1217 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes respectively. Raman bands at 629, 638, 690, 751 and 787 cm?1 are attributed to the SbO stretching vibrations. Raman bands at 600 and 610 cm?1 and at 429 and 459 cm?1 are assigned to the SO42? ν4 and ν2 bending modes. Raman bands at 359 and 375 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.  相似文献   

7.
Both V-T,R and V-V processes in methane have been studied optoacoustically following excitation of the ν3 level with a He-Ne laser at 2947.9 cm?1. The lifetime of the V-T,R process is 1.55 ± 0.05 μs atm. The rate constants for the fast equilibration between the bending modes is k2 → ν4) = 60 μs?1 atm?1 and k4 → ν2) = 13 μs?1 atm?1. The decay of the ν3 and ν2 stretching modes, which are in very rapid equilibrium, shows a rate constant of 0.23 ns?1 atm?1 and, within experimental error, produces exclusively the ν4 stretching mode. Part of this decay, 4.6%, is by a single-quantum process producing a large amount of translational/rotational energy; the dominant process, 95.4%, is double-quantum through the 2ν4 overtone. Both the yield of the single-quantum process and the exclusive production of the ν4 bending mode from the (ν3, ν2) level are in dispute with current theoretical models.  相似文献   

8.
True lineshape of the ν3(b1) vibrational transition of 32SO2 isolated in an Ar matrix was measured with a high resolution (< 10?3 cm?1) tunable diode laser spectrometer and temperature effects on line frequencies and linewidths are reported.  相似文献   

9.
The rate constant for the formation of H+5 (D+5) at (86 ± 3) °K by the three-body process has been determined (k3(H) = (2.16 ± 0.10) × 10?28 × 10?28 cm6/molecule2 sec and k3(D) = (1.47 ± 0.20) × 10?28 cm6/molecule2 sec) in a high pressure mass spectrometer. Comparison of this result with published rate data at 300 °K indicates the reaction has an apparent activation energy of ?1.5 kcal/mole.  相似文献   

10.
Computer deconvolution of spectra is discussed, and a close comparison made of deconvoluted spectra with those measured at higher resolution. It is shown that spectra at a resolution of ~0.012 cm?1 can be obtained by the use of a relatively small grating spectrometer.The parallel band, ν9 + ν10, of C2D6 is examined at a resolution of 0.012 cm?1 but no K-structure is observed, indicating that (A′?B′)?(A″?B″) is less than 1 × 10?5 cm?1. Rotational constants are given for the main band and two hot bands.  相似文献   

11.
《Chemical physics letters》1987,139(2):159-164
A three-dimensional fit of ab initio MRD CI potential data has been made for the lowest two electronic states of the HNC1 molecule (X̃ 2A″ and à 2A'), and the corresponding vibrational frequencies and rotational energies have been computed using the non-rigid bender Hamiltonian. For the ground state the vibrational frequencies obtained are ν1 = 2942 cm−1, ν2 = 1232 cm−1, and ν3 = 549 cm−1, while the corresponding values for the first excited state are 3524,947 and 836 cm−1 respectively. We calculate Tc2A') 16200 cm−1, To2A') = 16400 cm−1, and the Franck-Condon maximum, Ã(0,3,1)-X̃(0,0.0), is calculate at 19200 cm−1(5200 Å).  相似文献   

12.
Results of quantum and semiclassical calculations obtained for two different potential-energy surfaces are used to discuss spectroscopic properties and isotope effects of the linear IHI and IDI molecules. The potentials are a purely repulsive LEPS surface and a DIM-3C potential with two van der Waals type minima for equivalent IH ··· I and I ··· HI configurations. Both systems are dominated by the effect of vibrational bonding giving rise to some very unusual spectroscopic phenomena, which are discussed in detail. The different vibrational frequencies and rotational constants are roughly estimated as ν1 = 120 (100) cm?1, ν2 = 280 (210) cm?1, ν3 = 360 (160) cm?1 and B = 0.0194 (0.0196) cm?1 for IHI (IDI). A detailed discussion of the dependence of ν1, ν2 and B on ν3, their sensitivity to variations of the potential-energy surface, and a comparison with the vibrational frequencies of I2 and HI (ID) is given. It is predicted that there exists only one excited level of the antisymmetric stretching mode. The numbers of symmetrical stretching and bending levels are fairly constant or may even decrease upon deuteration. Simultaneously deuteration destabilizes the molecule. These unusual phenomena are rationalized by our calculations. A set of criteria for observing infrared and Raman bound-to-bound and bound-to-resonance state transitions are presented for the IHI and IDI molecule.  相似文献   

13.
A value of (9.3 ± 1.7) × 10?15 cm3 molecule ?1 has been determined as the rate constant for the quenching of O2(A 3Σu+) by N2 at 25°C.  相似文献   

14.
Preparation, Properties and Electronic Raman Spectra of Bis(chloro)-phthalocyaninatoferrate(III), -ruthenate(III) and -osmate(III) Bis(chloro)phthalocyaninatometalates of FeIII, RuIII and OsIII [MCl2Pc(2-)]?, with an electronic low spin ground state are formed by the reaction of [FeClPc(2-)] resp. H[MX2Pc(2?)] (M = Ru, Os; X = Cl, I) with excess chloride in weakly coordinating solvents (DMF, THF) and are isolated as (n-Bu4N) salts. The asym. M? Cl stretch (νas(MCl)) is observed in the f.i.r. at 288 cm?1 (Fe), 295 cm?1 (Ru), 298 cm?1 (Os), νas(MN) at 330 cm?1 (Fe), 327 cm?1 (Ru), and 317 cm?1 (Os); only νs(OsCl) at 311 cm?1 is resonance Raman (r.r.) enhanced with blue excitation. The m.i.r. and FT-Raman spectra are typical for hexacoordinated phthalocyanines of tervalent metal ions. The UV-vis spectra show besides the characteristic π-π* transitions (B, Q, N, L band) of the Pc ligand a number of extra bands at 12–15 kK and 18–24 kK due to trip-doublet and (Pc→M)CT transitions. The effect of metal substitution is discussed. The r.r. spectra obtained by excitation between the B and Q band (λ0 = 476.5 nm) are dominated by the intraconfigurational transition Γ7 Γ 8 arrising from the spin-orbit splitting of the electronic ground state for FeIII at 536 cm?1, for RuIII at 961 cm?1 and OsIII at 3 028 cm?1. Thus the spin-orbit coupling constant increases very greatly down the iron group: FeIII (357 cm?1)< RuIII (641 cm?1)< OsIII (2 019 cm?1). The Γ7 Γ 8-transition is followed by a very pronounced vibrational finestructure being composed in the r.r. spectra by the coupling with νs(MCl), δ(MClN) and the most intense fundamental vibrations of the Pc ligand. In absorption only vibronically induced transitions are observed for the Ru and Os complex at 1 700-2800 rsp. 3100-5800 em?1 instead of the 0-0 phonon transitions. The most intense lines are attributed to combinations of the intense odd vibrational mo-des at ≈ 740 and 1120 cm?1 with ν5(MCI), δ(MClN).  相似文献   

15.
Using the vibration-inversion-rotation Hamiltonian for ammonia [V. ?pirko, J.M.R. Stone and D. Papou?ek, J. Mol. Spectrosc. 60 (1976) 159], a modified theory is worked out for the Δk = ± 3n interactions between the inversion-rotation energy levels in the ground and excited state of NH3 which takes into account the large amplitude inversion motion.The high sensitivity submillimeter-wave spectrometer RAD has been used to measure the inversion and inversion-rotation transitions in the ν2 state of 14NH3 in the 18–37 cm?1 region with microwave accuracy. The frequencies of the inversion-rotation transitions in the ground and ν2 excited states have been measured with the 0.014 cm?1 resolution in the 35–300 cm?1 region with a Fourier transform spectrometer. The ν2 band frequencies have been measured under Doppler limited resolution (<0.002 cm?1) with a diode laser spectrometer and with 0.03 cm?1 resolution using a grating spectrometer in the 10 μm region.By a least squares fit of these data and the data of the infrared-microwave two-photon and infrared heterodyne measurements of the ν2 band, a set of the molecular constants for the ground and ν2 state is obtained which reproduces the experimental data within the precision of the experiment.  相似文献   

16.
Abstract

The complex μ-TEPP-trans-bis[P(OEt)3Ru(NH3)4]2(PF6)4 has been prepared and characterized by microanalysis, vibrational and electronic spectroscopy (λmax=299 nm, ?=6.4 × 102 M?1 cm?1; λmax=262 nm, ?=8.6 × 102 M?1 cm?1), and cyclic voltammetry (E°'=+0.64 V versus S.C.E., 25°, μ=0.10 M NaCf3COO, CH+=1 × 10?3 M). In aqueous solutions, ([H+] > 1 × 10?4 M), the binuclear species undergoes hydrolysis yielding the mononuclear species trans-(Ru(NH3)4P(OEt)3(H2O)]2+ with a specific rate constant of 2.4 × 10?5 sec?1 at 25° δH#=84.5 kJ mol?1; δS#=?49.4 J mol?1 K?1.  相似文献   

17.
Infrared (4000–200 cm?1) and Raman (3500–300 cm?1 ) spectra are reported for metal(II) halide and thiocyanate 4-methylpyridine complexes of the following stoichiometries: (MX2(4-Mepy)2) {M = Mn, Co, Cu or Zn, X = Cl or Br; M = Mn, Ni or Zn, X = NCS}; (MX2(4-Mepy)4) {M = Mn, Fe, Co or Ni, X = Cl or Br; M = Mn, Fe, Co, W or Cu, X = NCS}. For a given series of isomorphous complexes there is a correlation between the sum of the differences between the liquid and ligand values of the ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9, ν10, ν12, ν13 and ν14 modes of 4-methylpyridine and the strength of the metal-nitrogen bond. Comparison of the shift values of pyridine and 4-methylpyridine complexes supports the suggestion that, unlike the situation in the pyridine complexes, back-donation from the metal to the ligand is unimportant in the 4-methylpyridine complexes.  相似文献   

18.
The hyper-Raman spectrum of liquid C2Cl4 was recorded with Nd-YAG laser excitation and single channel detection. In addition to the known infrared active vibrations the Raman and infrared inactive twisting vibration ν4(au) was observed at 106 ± 3 cm?1.  相似文献   

19.
In a molecular beam the effects of vibrational pumping of SF63 = 948 cm?1) are studied, using a line-tunable cw CO2 laser. Intracavity spontaneous Raman scattering is used for analysis. For excitation in the collision regime (xE/D ≤ 1), a thermal redistribution of the ν3 excitation over all vibrational modes is found, together with an average absorption up to six photons per molecule. The infrared absorption profile shows a red-shift of 6 cm?1. For excitation in the relatively rare collision regime (xE/D ? 4), a structured non-thermal ν1 Raman spectrum is observed, especially in the case of seeded molecular beams (10% in He). The observed hot-band peaks can be explained in terms of single-photon absorptions and collision-induced near-resonant V-V energy transfer, leading to single, double and triple excitations of the ν3 mode. The value of Trot in the beam is found to influence sensitively the non-resonant energy-transfer rate [e.g. hν3(948 cm?1)+ΔEroth4 + ν6)(962 cm?1) relative to the near-resonant transfer rate (hν3 + hν3 → 2hν3 + 3.5 cm?1)].  相似文献   

20.
Electronic and vibrational emission spectra have been produced by the reaction of H atoms with NO, and studied under moderate resolving power. Preliminary rotational analyses of some of the bands give ν″1=2684.7 cm?1, ν″2=1565.3 cm?1 and ν″3=1500.4 cm?1. The values for ν″1 and ν″3 are considerably different from early published values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号