首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We obtain several results characterizing when transformation group C1-algebras have continuous trace. These results can be stated most succinctly when (G, Ω) is second countable, and the stability groups are contained in a fixed abelian subgroup. In this case, C1(G, Ω) has continuous trace if and only if the stability groups vary continuously on Ω and compact subsets of Ω are wandering in an appropriate sense. In general, we must assume that the stability groups vary continuously, and if (G, Ω) is not second countable, that the natural maps of GSx onto G · x are homeomorphisms for each x. Then C1(G, Ω) has continuous trace if and only if compact subsets of Ω are wandering and an additional C1-algebra, constructed from the stability groups and Ω, has continuous trace.  相似文献   

2.
If A and B are C1-algebras there is, in general, a multiplicity of C1-norms on their algebraic tensor product AB, including maximal and minimal norms ν and α, respectively. A is said to be nuclear if α and ν coincide, for arbitrary B. The earliest example, due to Takesaki [11], of a nonnuclear C1-algebra was Cl1(F2), the C1-algebra generated by the left regular representation of the free group on two generators F2. It is shown here that W1-algebras, with the exception of certain finite type I's, are nonnuclear.If C1(F2) is the group C1-algebra of F2, there is a canonical homomorphism λl of C1(F2) onto Cl1(F2). The principal result of this paper is that there is a norm ζ on Cl1(F2) ⊙ Cl1(F2), distinct from α, relative to which the homomorphism λ ⊙ λl: C1(F2) ⊙ C1(F2) → Cl1(F2) ⊙ Cl1(F2) is bounded (C1(F2) ⊙ C1(F2) being endowed with the norm α). Thus quotients do not, in general, respect the norm α; a consequence of this is that the set of ideals of the α-tensor product of C1-algebras A and B may properly contain the set of product ideals {I ? B + A ? J: I ? A, J ? B}.Let A and B be C1-algebras. If A or B is a W1-algebra there are on AB certain C1-norms, defined recently by Effros and Lance [3], the definitions of which take account of normality. In the final section of the paper it is shown by example that these norms, with α and ν, can be mutually distinct.  相似文献   

3.
We show that if G is a σ compact locally compact group with relatively compact conjugacy classes, then the enveloping C1-algebra C1(G) has a Hausdorff primitive ideal space. We also discuss some open problems and a partial converse result.  相似文献   

4.
Let A be a C1-algebra, B be a C1-subalgebra of A, and φ be a factorial state of B. Sometimes, φ may be extended to a factorial state of A by a tensor product method of Sakai (“C1-algebras and W1-algebras, Springer-Verlag, Berlin/Heidelberg/ New York 1971”). Sometimes, there is a weak expectation of A into πφ(B), and then factorial extensions may be found by a method of Sakai and Tsui (Yokohama Math. J.29 (1981), 157–160). These two methods are shown to have the same effect, and the factorial extensions produced by them are analysed.  相似文献   

5.
Let G be a semisimple noncompact Lie group with finite center and let K be a maximal compact subgroup. Then W. H. Barker has shown that if T is a positive definite distribution on G, then T extends to Harish-Chandra's Schwartz space C1(G). We show that the corresponding property is no longer true for the space of double cosets K\GK. If G is of real-rank 1, we construct liner functionals Tp ? (Cc(K\GK))′ for each p, 0 < p ? 2, such that Tp(f 1 f1) ? 0, ?f ? Cc(K\GK) but Tp does not extend to a continuous functional on Cp(K\GK). In particular, if p ? 1, Tv does not extend to a continuous functional on C1(K\GK). We use this to answer a question (in the negative) raised by Barker whether for a K-bi-invariant distribution T on G to be positive definite it is enough to verify that T(f 1 f1) ? 0, ?f ? Cc(K\GK). The main tool used is a theorem of Trombi-Varadarajan.  相似文献   

6.
The K-theory of the C1-algebra C1(V, F) associated to C-foliations (V, F) of a manifold V in the simplest non-trivial case, i.e., dim V = 2, is studied. Since the case of the Kronecker foliation was settled by Pimsner and Voiculescu (J. Operator Theory4 (1980), 93–118), the remaining problem deals with foliations by Reeb components. The K-theory of C1(V, F) for the Reeb foliation of S3 is also computed. In these cases the C1-algebra C1(V, F) is obtained from simpler C1-algebras by means of pullback diagrams and short exact sequences. The K-groups K1(C1(V, F)) are computed using the associated Mayer-Vietoris and six-term exact sequences. The results characterize the C1-algebra of the Reeb foliation of T2 uniquely as an extension of C(S1) by C(S1). For the foliations of T2 it is found that the K-groups count the number of Reeb components separated by stable compact leaves. A C-foliation of T2 such that K1(C1(T2, F)) has infinite rank is also constructed. Finally it is proved, by explicit calculation using (M. Penington, “K-Theory and C1-Algebras of Lie Groups and Foliations,” D. Phil. thesis, Oxford, 1983), that the natural map μ: K1,τ(BG) → K1(C1(V, F)) is an isomorphism for foliations by Reeb components of T2 and S3. In particular this proves the Baum-Connes conjecture (P. Baum and A. Connes, Geometric K-theory for Lie groups, preprint, 1982; A. Connes, Proc. Symp. Pure Math.38 (1982), 521–628) when V = T2.  相似文献   

7.
Let an amenable second countable locally compact group G act continuously on a separable C1-algebra A: the structure of the prime ideal space of the crossed product C1(G, A) is investigated without any restricting hypothesis on the action of G.  相似文献   

8.
If Ω denotes an open subset of Rn (n = 1, 2,…), we define an algebra g (Ω) which contains the space D′(Ω) of all distributions on Ω and such that C(Ω) is a subalgebra of G (Ω). The elements of G (Ω) may be considered as “generalized functions” on Ω and they admit partial derivatives at any order that generalize exactly the derivation of distributions. The multiplication in G(Ω) gives therefore a natural meaning to any product of distributions, and we explain how these results agree with remarks of Schwartz on difficulties concerning a multiplication of distributions. More generally if q = 1, 2,…, and ?∈OM(R2q)—a classical Schwartz notation—for any G1,…,GqG(σ), we define naturally an element ?G1,…,Gq∈G(σ). These results are applied to some differential equations and extended to the vector valued case, which allows the multiplication of vector valued distributions of physics.  相似文献   

9.
10.
Necessary and sufficient conditions are proved for a b(2)-Young function G (with independent variable t) to be convex (resp. concave) in t2 in terms of inequalities between the second derivative of G and the first derivative of its Legendre transform G? (with independent variable s). It is then proven that a Young function G is convex (resp. concave) in t2 if and only if G? is concave (resp. convex) in s2. These results, along with another set of inequalities for functions G convex (resp. concave) in t2, allow the proof of the uniform convexity and thereby of the reflexivity with respect to Luxemburg's norm ∥f∥G = inf{k > 0: ∝Ω dξ G(f(ξ)k) ? 1} of the Orlicz space LG(Ω) over an open domain Ω ?RN with Lebesgue measure . When applied to G(t) = ¦t¦pp and G?(s) = ¦s¦p′p′ with p?1 + (p′)?1 = 1, the preceding results lead to the shortest proof to date of two Clarkson's inequalities and of the reflexivity of Lp-spaces for 1 < p < +∞. Finally, some of these results are used to solve by direct methods variational problems associated with the existence question of periodic orbits for a class of nonlinear Hill's equations; these variational problems are formulated on suitable Orlicz-Sobolev spaces WmLG(Ω) and thereby allow for nonlinear terms which may grow faster than any power of the variable.  相似文献   

11.
We consider a real semi-simple Lie group G with finite center and a maximal compact sub-group K of G. Let G=Kexp(a+)K be a Cartan decomposition of G. For xG denote ∥x∥ the norm of the a+-component of x in the Cartan decomposition of G. Let a>0,b>0 and 1?p,q?∞. In this Note we give necessary and sufficient conditions on a,b such that for all K-bi-invariant measurable function f on G, if eax2fLp(G) and eb∥λ∥2F(f)∈Lq(a+1) then f=0 almost everywhere. To cite this article: S. Ben Farah, K. Mokni, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

12.
An elementary proof is given of the author's transformation formula for the Lambert series Gp(x) = Σn?1 n?pxn(1?xn) relating Gp(e2πiτ) to Gp(e2πiAτ), where p > 1 is an odd integer and Aτ = (aτ + b)(cτ + d) is a general modular substitution. The method extends Sczech's argument for treating Dedekind's function log η(τ) = πiτ12 ? G1(e2πiτ), and uses Carlitz's formula expressing generalized Dedekind sums in terms of Eulerian functions.  相似文献   

13.
We consider unbounded derivations in C1-algebras commuting with compact groups of 1-automorphisms. A closed 1-derivation δ in a C1-algebra U is said to be a generator if there exists a strongly continuous one-parameter subgroup tRτ(t)? Aut(U) such that δ = ddt τ(t)¦t = 0. If δ is known to commute with a compact abelian action α:G→Aut(U), and if δ(a) = 0 for all a in the fixed point algebra Uα of the action G, then we show that δ is necessarily a generator. Moreover, in any faithful G-covariant representation, there is a commutative operator field γ ∈ ? → v(γ) such that v(γ)1 = ?v(γ), v(γ) is possibly unbounded but affiliated with the center of {Uα}″, and e(x) = xetv(γ) for all x in the Arveson spectral subspace Uα(γ). In particular, if U is the CAR algebra over an infinite-dimensional Hilbert space and α is the gauge group, then any such derivation δ is a scalar multiple of the generator of the gauge group.  相似文献   

14.
Let (A, G, α) be a C1-dynamical system, where G is abelian, and let φ be an invariant state. Suppose that there is a neighbourhood Ω of the identity in G? and a finite constant κ such that Πi = 1n φ(xi1xi) ? κ Πi = 1n φ(xixi1) whenever xi lies in a spectral subspace Rαi), where Ω1 + … + Ωn ? Ω. This condition of complete spectral passivity, together with self-adjointness of the left kernel of φ, ensures that φ satisfies the KMS condition for some one-parameter subgroup of G.  相似文献   

15.
Let Π(G) be the set of paths of a particular class Π from the initial to the terminal root of a two-rooted (possibly directed) graph G. We consider the family of D-weights defined by
D(G)=∑Π′εΠ1(G)(-1)|Π′|+1
where Πx(G) is the family of subsets of Π(G) which cover x(G), the vertex set or the edge (arc) set of G.A number of the common properties and interrelations of these weights are discussed. Some of the weights have been considered previously, [1, 2], in the context of percolation theory but here only combinatorial arguments are used.  相似文献   

16.
Let B(H) be the bounded operators on a Hilbert space H. A linear subspace R ? B(H) is said to be an operator system if 1 ?R and R is self-adjoint. Consider the category b of operator systems and completely positive linear maps. R ∈ C is said to be injective if given A ? B, A, B ∈ C, each map AR extends to B. Then each injective operator system is isomorphic to a conditionally complete C1-algebra. Injective von Neumann algebras R are characterized by any one of the following: (1) a relative interpolation property, (2) a finite “projectivity” property, (3) letting Mm = B(Cm), each map RN ? Mm has approximate factorizations RMnN, (4) letting K be the orthogonal complement of an operator system N ? Mm, each map MmK → R has approximate factorizations MmK → Mn → R. Analogous characterizations are found for certain classes of C1-algebras.  相似文献   

17.
We prove that the representation of C1(G × GH) induced from the restriction to H of a unitary representation π of G can be constructed directly from π in the framework of Rieffel's theory of induced representations of C1-algebras, with the inducing process defined by a generalized conditional expectation. We then show, in the general context of Rieffel's theory, that if the induced representation is CCR, so is the original. In a more special situation, which still generalizes that of a conditional expectation onto a subalgebra, and which includes the operation of inducing from an open subgroup and the above-mentioned process when GH is of finite volume, we prove that if the induced representation is type I, so is the original, and obtain a result on intertwining operators. This provides a unified treatment, as well as an extension to the nonseparable case, of certain known results on induction and restriction of representations.  相似文献   

18.
The “cylinder conjecture” is to suppose that, if K is a gauge, the critical constants of C(K) = K ×] ? 1, +1 [? Rn+1 and of its basis K ? Rn are equal. The connection with packing constants is studied. The concept of Za(ssenhaus)-packing is introduced. ⊕i=1hG + (i ? 1)a (G a lattice) is a linear h-lattice, ζh′(K), ζh(K), ηh′(K), ηh(K) the maximum density for translates of K by a linear h-lattice if the translates form a Za-packing for ζ, a packing for η, and if this packing is strict for ^. For K a bounded central star body, it is possible to find H with ζ1(C(K)) ≤ 2 ζH′(K). H is precised for K a gauge and for K = Bn. It is proved by Woods' methods that η1(C(B4)) = supi=1, 3, 4, 6,7 ηi(B4); a result of Cleaver is used.  相似文献   

19.
We associate to a pseudomanifold X with an isolated singularity a differentiable groupoid G which plays the role of the tangent space of X. We construct a Dirac element D and a Dual Dirac element λ which induce a Poincaré duality in K-theory between the C1-algebras C(X) and C1(G). To cite this article: C. Debord, J.-M. Lescure, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号