首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 1H and 87Rb spin-lattice relaxation and spin-spin relaxation times in superionic Rb3H(SeO4)2 single crystals grown by the slow evaporation method were measured over the temperature range 160-450 K. The temperature dependencies of the 1H T1, T1ρ, and T2 are measured. In the ferroelastic phase, T1 differs from T1ρ, which is in turn different from T2, although these three relaxation times converge to similar values near 410 K. This transition seems to occur at temperature which is about 40 K lower than the superionic transition temperature. The observation of liquid-like values of the 1H T1, T1ρ, and T2 in the high temperature is compatible with the phase being superionic, indicating that the destruction and reconstruction of hydrogen bonds does indeed occur at high temperature. In addition, the 87Rb T1 and T2 values at high temperature were similar (on the order of milliseconds), a trend that was also observed for 1H T1 and T2. This behavior is expected for most hopping-type ionic conductors, and could be attributed to interactions between the mobile ions and the neighboring group ions within the crystal. The motion giving rise to this liquid-like behavior is related to the superionic motion.  相似文献   

2.
The phase transitions and proton dynamics of Cs5H3(SO4)4·0.5H2O single crystals were studied by measuring the NMR line shape, the spin-lattice relaxation time, T1, and the spin-spin relaxation time, T2, of the 1H and 133Cs nuclei. The “acid” protons and the “water” protons in Cs5H3(SO4)4·0.5H2O were distinguished. The loss of water protons was observed above TC1, whereas the content of water protons was found to recover above TC2. Therefore, the water protons play a special role in the stability of the superprotonic phase at high temperatures. The mechanism of fast proton conduction was found to consist of hydrogen-bond proton transfer involving the breakage of the weak part of the hydrogen bond and the formation of a new hydrogen bond. Thus, these structural phase transitions probably involve significant reorientation of the SO4 tetrahedra and dynamical disorder of the hydrogen bonds between them.  相似文献   

3.
Proton NMR relaxation times T2, T1, and T1? are reported for NH4+ β-alumina powder in the temperature range 77 K < T < 500 K at 16 MHz. The measurements show that the NH4+ ions both reorient and translate. The translational process can be characterized by the parameters E = 20 kJ mole?1 and τ0d = 3 × 10?11 sec. Relaxation at high temperatures is dominated by dipolar coupling to paramagnetic impurities. Reasons for the different activation energies measured using NMR and other techniques for β-alumina compounds are discussed.  相似文献   

4.
Two solid phase transitions of [Cd(H2O)6](BF4)2 occurring on heating at TC2=183.3 K and TC1=325.3 K, with 2 K and 5 K hysteresis, respectively, were detected by differential scanning calorimetry (DSC). High value of entropy changes indicated large orientational disorder of the high temperature and intermediate phase. Nuclear magnetic resonance (1H NMR and 19F NMR) relaxation measurements revealed that the phase transitions at TC1 and TC2 were associated with a drastic and small change, respectively, of the both spin-lattice relaxation times: T1(1H) and T1(19F). These relaxation processes were connected with the “tumbling” motions of the [Cd(H2O)6]2+, reorientational motions of the H2O ligands, and with the iso- and anisotropic reorientation of the BF4 anions. The cross-relaxation effect was observed in phase III. The line width and the second moment of the 1H and 19F NMR line measurements revealed that the H2O reorientate in all three phases of the title compound. On heating the onset of the reorientation of 3 H2O in the [Cd(H2O)6]+2, around the three-fold symmetry axis of these octahedron, causes the isotropic reorientation of the whole cation. The BF4 reorientate isotropically in the phases I and II, but in the phase III they perform slow reorientation only about three- or two-fold axes. A small distortion in the structure of BF4 as well as of [Cd(H2O)6]2+ is postulated. The temperature dependence of the bandwidth of the O-H stretching mode measured by Fourier transform middle infrared spectroscopy (FT-MIR) indicated that the activation energy for the reorientation of the H2O did not change much at the TC2 phase transition.  相似文献   

5.
Two inequivalent protons from 1H NMR spectra of RbH2AsO4 in the paraelectric phase were distinguished using static NMR and MAS NMR. From the 1H spin–lattice relaxation times in the laboratory frame, T1, and rotating frame, T, of the two crystallographically inequivalent hydrogen sites, i.e., H(1) and H(2), the temperature dependences of T1 and T for H(1) were related to the reorientational motion. The shorter H(1) bonds give rise to stronger H-bonds, and protons involved in stronger H-bonds have long relaxation times. Consequently, the RbH2AsO4 structure has two crystallographically inequivalent sites with two different hydrogen-bond lengths.  相似文献   

6.
The longitudinal relaxation rates of the protons and the fluorine were determined for the radical cation salt (fluoranthenyl)2+PF6? as a function of the temperature. These data are compared with the temperature dependence of the pulsed ESR signal amplitude at the same Larmor frequency (44 MHz). Whereas the fluorines are relaxed mainly by the reorientational motion of the anions and by the interaction with fixed paramagnetic impurities, the protons are relaxed additionally above 150 K predominantly by highly mobile paramagnetic species, whose concentration could be determined directly via the signal amplitudes of the NMR and ESR signals in the same set up. The Pauli susceptibility χcs = 3.1 ×10?5 cm3/mole which is derived from this experiment and the Korringa relation (T1H4?)?1 = constant of the proton relaxation leads to the assumption of a metal-like behavior of the salt above 183 K. The observation that the protons of the cation stacks, rather than the fluorines on the anions are relaxed by the mobile paramagnetic species favors the assumption of one-dimensional spin transport within the fluoranthenyl stacks, which is further supported by an ω?12 dependence of T1H?1.  相似文献   

7.
The physical properties and phase transition mechanisms of MCr(SO4)2·12H2O (M=Rb and Cs) single crystals have been investigated. The phase transition temperatures, NMR spectra, and the spin-lattice relaxation times T1 of the 87Rb and 133Cs nuclei in the two crystals were determined using DSC and FT NMR spectroscopy. The resonance lines and relaxation times of the 87Rb and 133Cs nuclei undergo significant changes at the phase transition temperatures. The sudden changes in the splitting of the Rb and Cs resonance lines are attributed to changes in the local symmetry of their sites, and the changes in the temperature dependences of T1 are related to variations in the symmetry of the octahedra of water molecules surrounding Rb+ and Cs+. We also compared these 87Rb and 133Cs NMR results with those obtained for the trivalent cations Cr and Al in MCr(SO4)2·12H2O and MAl(SO4)2·12H2O crystals.  相似文献   

8.
The temperature dependence of T1 for 3He gas in the range 0–4°K is calculated for a Lennard-Jones (12,6) potential. The relaxation of the nuclear spins is assumed to be due to a dipolar interaction between the nuclei. A minimum value in the relaxation time, T1,min, is found to occur at a temperature denoted by Tmin. By repeating the calculation for different pairs of values of the potential parameters ? and σ, we have found that for a density of 10?2 g/cm32Tmin = 13.0?1.12 × 1032, T1,min2(Tmin)12 = 17.4?6.56 × 1022, with ?, σ, Tmin and T1,min in eV, Å, °K and minutes, respectively. From measurements of Tmin and T1,min, ? and σ can be determined.  相似文献   

9.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

10.
Mössbauer spectroscopy and neutron diffraction studies have been carried out for the α-Li3Fe2(PO4)3−x(AsO4)x (x=1, 1.5, 2, 3) solid solution, potential candidate for the cathode material of the lithium secondary batteries. The crystal and magnetic structures of all these phases are based on the structural and magnetic model corresponding to the α-Li3Fe2(PO4)3 phosphate parent, but with some differences promoted by the arsenate substitution. The PO4 and AsO4 groups have a random distribution in the structure. In all compounds the coupling of the magnetic moments takes place in the (001) plane, but the value of the angle between the moments and the x direction decreases from 38.3° (α-Li3Fe2(AsO4)3) to 4.7° (α-Li3Fe2(PO4)2(AsO4)1). This rotation arises from the change in the tilt angle between the Fe(1)O6 and Fe(2)O6 crystallographically and magnetically independent octahedra in the structures, and affects the effectiveness of the magnetic exchange pathways. The ordering temperature TN decreases with the increase of phosphate amount in the compounds. The existence of a phenomenon of canting and the evolution of the ferrimagnetic behavior in this solid solution is also discussed.  相似文献   

11.
Proton NMR relaxation times (T2T1, and T1?) and absorption spectra are reported for the compounds H1.71MoO3 (red monoclinic) and H0.36MoO3 (blue orthorhombic) in the temperature range 77 K < T < 450 K. Rigid lattice dipolar spectra show that both compounds contain proton pairs, as OH2 groups coordinated to Mo atoms in H1.71MoO3 and as pairs of OH groups in H0.36MoO3. The room temperature lineshape for H1.71MoO3 shows that the average chemical shielding tensor has a total anisotropy of 20.1 ppm. The relaxation measurements confirm that hydrogen diffusion occurs and give EA = 22 kJ mole?1 and τ0C ? 10?13sec for H1.71MoO3 and EA = 11 kJ mole?1 and τ0C ? 3 × 10?8sec for H0.36MoO3.  相似文献   

12.
Absorption spectra of single crystals of Cs2SO4 doped with MoO2?4 and of RbClO4 and (C2H5)4HClO4 doped with ReO?4 have been measured at the liquid-helium temperature. All spectra show two band systems with pronounced vibrational structures. In Td symmetry they must correspond to 1T2 - 1A1 charge-transfer electornic transitions. It is likely that in the two band systems there are more than two electronic transitions.  相似文献   

13.
The crystal structures of caesium dihydrogen arsenate(V) bis[trihydrogen arsenate(V)], Cs(H2AsO4)(H3AsO4)2, ammonium dihydrogen arsenate(V) trihydrogen arsenate(V), NH4(H2AsO4)(H3AsO4), and dilithium bis(dihydrogen phosphate), Li2(H2PO4)2, were solved from single‐crystal X‐ray diffraction data. NH4(H2AsO4)(H3AsO4), which was hydrothermally synthesized (T = 493 K), is homeotypic with Rb(H2AsO4)(H3AsO4), while Cs(H2AsO4)(H3AsO4)2 crystallizes in a novel structure type and Li2(H2PO4)2 represents a new polymorph of this composition. The Cs and Li compounds grew at room temperature from highly acidic aqueous solutions. Li2(H2PO4)2 forms a three‐dimensional (3D) framework of PO4 tetrahedra sharing corners with Li2O6 dimers built of edge‐sharing LiO4 groups, which is reinforced by hydrogen bonds. The two arsenate compounds are characterized by a 3D network of AsO4 groups that are connected solely via multiple strong hydrogen bonds. A statistical evaluation of the As—O bond lengths in singly, doubly and triply protonated AsO4 groups gave average values of 1.70 (2) Å for 199 As—OH bonds, 1.728 (19) Å for As—OH bonds in HAsO4 groups, 1.714 (12) Å for As—OH bonds in H2AsO4 groups and 1.694 (16) Å for As—OH bonds in H3AsO4 groups, and a grand mean value of 1.667 (18) Å for As—O bonds to nonprotonated O atoms.  相似文献   

14.
The heat capacities of MnBr2 · 4H2O and MnCl2 · 4H2O have been experimentally determined from 10 to 300 K. The smoothed heat capacity and the thermodynamic functions (H°TH°0) andS°T are reported for the two compounds over the temperature range 10 to 300 K. The error in these data is thought to be less than 1%. A subtle heat capacity anomaly was observed in MnCl2 · 4H2O over the temperature range 52 to 90 K. The entropy associated with the anomaly is of the order 0.4 J/mole K.  相似文献   

15.
Proton NMR relaxation times (T2, T1, T1?) are reported for powder samples of MoO3 · 2H2O and yellow MoO3 · H2O in the temperature range 150–325 K and at 20 and 60 MHz. No translation of hydrogen atoms is detected but the spin-lattice relaxation behavior indicates reorientation of H2O molecules. The waters coordinated to Mo atoms undergo 180° flips (about their C2 axes) with similar motional parameters in both compounds. The interlayer waters in MoO3 · 2H2O undergo 180° flips with different parameters. An assumed Arrhenius-type temperature dependence of correlation times leads to preexponential factors which are “anomalously” low. The possible involvement of temperature-dependent activation barriers is discussed.  相似文献   

16.
Nuclear spin-lattice relaxation times T1 for deuterons and 19F nuclei in polycrystalline (ND4)2GeF6 were measured by the pulse method at 8 MHz between 40 K and 300 K and between 4 K and 400 K, respectively. Correlation times and activation energies for the reorientational motions of ND4+ and GeF62? ions were calculated from the measured T1 values.  相似文献   

17.
The potassium chromium (III) arsenate K3Cr3(AsO4)4 is prepared by solid state reaction at 900°C from a mixture of K2CO3, As2O3 and (NH4)2Cr2O7. It is structurally characterized by single-crystal X-ray diffraction. It crystallizes in the Cmca (no. 64) space group with a=10.671(1) Å, b=20.911(5) Å, c=6.500(3) Å, V=1450.4(8) Å3, Z=4, R(F2)=0.0424 and (F2)=0.1199 for 846 reflections with F2>2σ(F2). The structure consists of CrO6 octahedra and AsO4 tetrahedra sharing corners and edges to form a two-dimensional framework. The K+(2) cations are located in the interlayer space. Conductivity measurement () shows that K3Cr3(AsO4)4 is a poor ionic conductor.  相似文献   

18.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

19.
A series of selected pyromorphite minerals Pb5(PO4)3Cl from different Australian localities has been studied by Raman spectroscopy complemented with selected infrared spectroscopy. The Raman spectrum of unsubstituted pyromorphite shows a single band at around 920 cm−1 but for the natural minerals two bands at 919 and ∼932 cm−1 attributed to the ν1 (PO4)3− stretching vibration. The observation of multiple bands is attributed to the non-equivalence of phosphate units in the pyromorphite structure and the reduction in symmetry of the (PO4)3− units. This symmetry reduction is confirmed by the observation of multiple bands in both the ν4 bending region (500–595 cm−1) and the ν2 bending region (350–500 cm−1). The presence of isomorphic substitution of (PO4)3− by (AsO4)3− units is identified by the ν1 symmetric stretching bands at around 824 and 851 cm−1 and the ν2 bending region around 331 and 354 cm−1. Contrary to expectation Raman bands in the 3320–3700 cm−1 region are observed and assigned to OH stretching bands of OH units resulting from the substitution of chloride anions in the pyromorphite structure. This study brings in to question the actual formula of natural pyromorphite as it is better represented as Pb5(PO4,AsO4)3(Cl,OH) · xH2O.  相似文献   

20.
The citrate-nitrate gel combustion route was used to prepare SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s) powders and the compounds were characterized by X-ray diffraction analysis. Different solid-state electrochemical cells were used for the measurement of emf as a function of temperature from 970 to 1151 K. The standard molar Gibbs energies of formation of these ternary oxides were calculated as a function of temperature from the emf data and are represented as (SrFe2O4, s, T)/kJ mol−1 (±1.7)=−1494.8+0.3754 (T/K) (970?T/K?1151). (Sr2Fe2O5, s, T)/kJ mol−1 (±3.0)=−2119.3+0.4461 (T/K) (970?T/K?1149). (Sr3Fe2O6, s, T)/kJ mol−1 (±7.3)=−2719.8+0.4974 (T/K) (969?T/K?1150).Standard molar heat capacities of these ternary oxides were determined from 310 to 820 K using a heat flux type differential scanning calorimeter (DSC). Based on second law analysis and using the thermodynamic database FactSage software, thermodynamic functions such as ΔfH°(298.15 K), S°(298.15 K) S°(T), Cp°(T), H°(T), {H°(T)-H°(298.15 K)}, G°(T), free energy function (fef), ΔfH°(T) and ΔfG°(T) for these ternary oxides were also calculated from 298 to 1000 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号