首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method is described for the determination of copper(II) ions based on the cathodic electrochemiluminescence (ECL) of lucigenin which is quenched by Cu(II). The blue ECL is best induced at ?0.45 V (vs. Ag/AgCl) at a scan rate of 50 mV·s?1. Under optimum conditions, the calibration plot is linear in the 3.0 to 1000 nM Cu(II) concentration range. The limit of detection is 2.1 nM at a signal-to-noise ratio of 3. Compared to other analytical methods, the one presented here is simple, fast, selective and cost-effective. It has been successfully applied in the analysis of copper ions in spiked tap water samples with recoveries ranging from 93.0% (at 50 nM concentration) to 105.7% (at 150 nM).
Graphical abstract The inhibitory effect of Cu(II) on the cathodic electrochemiluminescence of lucigenin enables determination of Cu(II) with a 2.1 nM detection limit.
  相似文献   

2.
The authors report that the peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine. This finding has led to  a highly sensitive colorimetric assay for cysteine that is based on the nanohybrid-catalyzed oxidation of TMB by H2O2 to form a blue product. The method has a detection limit of 5.0 nM and a linear range from 10 nM to 20 μM. The assay is highly selective over other amino acids. It was successfully applied to the determination of cysteine in an injection containing a mixture of amino acids.
Graphical abstract The peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine, enabling the determination of cysteine.
  相似文献   

3.
A photoelectrochemical wire microelectrode was constructed based on the use of a TiO2 nanotube array with electrochemically deposited CdSe semiconductor. A strongly amplified photocurrent is generated on the sensor surface. The microsensor has a response in the 0.05–20 μM dopamine (DA) concentration range and a 16.7 μM detection limit at a signal-to-noise ratio of 3. Sensitivity, recovery and reproducibility of the sensor were validated by detecting DA in spiked human urine, and satisfactory results were obtained.
Graphical abstract Schematic of a sensitive photoelectrochemical microsensor based on CdSe modified TiO2 nanotube array. The photoelectrochemical microsensor was successfully applied to the determination of dopamine in urine samples.
  相似文献   

4.
This article reviews the progress made in the past 5 years in the field of direct and non-enzymatic electrochemical sensing of glucose. Following a brief discussion of the merits and limitations of enzymatic glucose sensors, we discuss the history of unraveling the mechanism of direct oxidation of glucose and theories of non-enzymatic electrocatalysis. We then review non-enzymatic glucose electrodes based on the use of the metals platinum, gold, nickel, copper, of alloys and bimetals, of carbon materials (including graphene and graphene-based composites), and of metal-metal oxides and layered double hydroxides. This review contains more than 200 refs.
Figure This article reviews the history of unraveling the mechanism of direct electrochemical glucose oxidation and the attempts to successfully develop non-enzymatic electrochemical glucose sensors over the past 5 years.
  相似文献   

5.
The authors report on a new approach for the determination of the breast cancer biomarker microRNA-155 (miRNA-155). It is based on the measurement of the fluorescence shift of oligonucleotide-templated copper nanoclusters (DNA-CuNC). A probe DNA was designed that acts as a template for the preparation of CuNC which, under 400 nm excitation, exhibit strong fluorescence enhancement at 490 nm and a 90 nm Stokes shift after binding to target miRNA-155 and formation of a DNA-RNA heteroduplex. Under the optimal conditions, the fluorescence of the DNA-CuNC increases with increasing concentration of miRNA-155 in the range from 50 pM to 10 nM, with a 11 pM detection limit. The assay has excellent selectivity over noncomplementary RNA. The method was applied to the determination of miRNA-155 in the presence of human plasma and saliva.
Graphical abstract Schematic of the detection strategy that relies on the fluorescence shift of DNA-CuNCs resulting from the specific binding of DNA-CuNCs with target miRNA-155. Fluorescence intensities are linearly proportional to the concentrations of target RNA from 50 pM to 10 nM.
  相似文献   

6.
The authors describe a method for amperometric determination of thiodiglycol (TDG), the main hydrolysis product of sulfur mustard. The electrode consists of a mixture of graphene nanosheets, silver nanoparticles and the ionic liquid octylpyridinium hexafluorophosphate. Electrochemical oxidation of TDG was performed by cyclic voltammetry at pH 4 and revealed a pair of well-defined redox peaks at potentials of 0.43 and 0.19 V (vs. Ag/AgCl). Amperometric detection was accomplished over a dynamic range that is linear in the 10–3700 μM concentration range. The detection limit (at an S/N of 3) is 6 μM. The electrode was applied to the determination of TDG in (spiked) waste water and gave recoveries that ranged from 98.2 to 103.3 %.
Graphical abstract The article describes an amperometric sensor for the determination of thiodiglycol, the main hydrolysis product of sulfur mustard. The electrode was constructed by using graphene nanosheets, silver nanoparticles and an ionic liquid electrode, and it was successfully applied to the determination of thiodiglycol in (spiked) waste water samples.
  相似文献   

7.
The authors describe an ethylene glycol assisted precipitation method for synthesis of Er(III)/Yb(III)-doped BiF3 nanoparticles (NPs) at room temperature. Under 980-nm light irradiation, the NPs emit upconversion (UC) emission of Er(III) ions as a result of a two-photon absorption process. The temperature-dependent green emissions (peaking at 525 and 545 nm) are used to establish an unambiguous relationship between the ratio of fluorescence intensities and temperature. The NPs have a maximum sensitivity of 6.5?×?10?3 K?1 at 619 K and can be applied over the 291–691 K temperature range. The results indicate that these NPs are a promising candidate for optical thermometry.
Graphical abstract Schematic of the room-temperature preparation of Er(III)/Yb(III)-doped BiF3 nanoparticles with strongly temperature-dependent upconversion emission.
  相似文献   

8.
A composite consisting of chitosan containing azidomethylferrocene covalently immobilized on sheets of reduced graphene oxide was drop-casted on a polyester support to form a screen-printed working electrode that is shown to enable the determination of nitrite by cyclic voltammetry and chronoamperometry. Both reduction and oxidation of nitrite can be accomplished due to the high electron-transfer rate of this electrode. Under optimal experimental conditions (i.e. an applied potential of 0.7 V vs. Ag/AgCl in pH 7.0 solution), the calibration plot is linear in the 2.5 to 1450 μM concentration range, with an ~0.35 μM limit of detection (at a signal-to-noise ratio of 3). The sensor was successfully applied to the determination of nitrite in spiked mineral water samples, with recoveries ranging between 95 and 101 %.
Graphical abstract We describe the design of ferrocene-functionalized reduced graphene oxide electrode and its electrocatalytic properties towards the determination of nitrite. Compared to a reduced graphene oxide electrode, the sensor exhibits enhanced electrocatalytic activity towards both oxidation and reduction of nitrite.
  相似文献   

9.
Carbon polymer dots (CPDs) were prepared by a one-pot aqueous synthetic route from ascorbic acid and diethylenetriamine at room-temperature. The CPDs under 350-nm excitation exhibit blue fluorescence peaking at 430 nm with a quantum yield of 47%. Other features include an average diameter of 5 nm, a fluorescence that is independent of the excitation wavelength, good water dispersibility and photostability, and excellent biocompatibility. The CPDs are shown to be viable fluorescent probes for ferric ion which acts as a strong quencher. The response to Fe(III) is linear in the 0.2 to 10 μM concentration range, and the detection limit is 0.1 μM. The probe was applied to the determination of Fe(III) in environmental waters and to intracellular imaging of ferric ions in HeLa cells.
Graphical abstract Carbon polymer dots (CPDs) are prepared from ascorbic acid and diethylenetriamine (DETA) at room-temperature (RT). The RT-CPDs exhibit excellent optical performance, biocompatibility and selectivity of quenching by ferric ions. This can be applied for determination and intracellular imaging of ferric ion.
  相似文献   

10.
CdSe:Eu nanocrystals were successfully synthesized and characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectric spectroscopy. The CdSe:Eu nanocrystals showed enhanced green electrochemiluminescence (ECL) intensity when compared to pure CdSe nanocrystals. Further, the nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen (CEA) that has a linear response over the 1.0 fg·mL?1 to 100 ng·mL?1 CEA concentration range with a 0.4 fg·mL?1 detection limit. The assay was applied to the determination of CEA in human serum samples.
Graphical abstract Schematic of the assay: GCE-glassy-carbon electrode, Ab- Antibody, BSA- Bovine serum albumin, Ag- Antigen. CdSe:Eu nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen.
  相似文献   

11.
Three-dimensional structures comprising polypyrrole nanowires (PPyNWs) and molecularly imprinted polymer (MIP) were prepared by electropolymerization on the surfaces of a glassy carbon electrode (GCE). The modified GCE possesses both large surface area and good electrocatalytic activity for oxidizing dopamine (DA), and this leads to high sensitivity. The electropolymerized MIP has a large number of accessible surface imprints, and this makes the GCE more selective. Under optimal conditions and at a working voltage of typically 0.23 V (vs. SCE), the calibration plot is linear in the 50 nM to 100 μM DA concentration range, and the limit of detection is 33 nM. The sensor has been successfully applied to the analysis of DA in injections.
Graphical abstract Schematic of a three-dimensional nanocomposite based dopamine sensing platform based on the use of a molecularly imprinted polymer and poly(pyrrole) nanowires. The modified polypyrrole nanowires and molecularly imprinted polymer endowed high electrocatalytic capacity and good selectivity for dopamine recognition, respectively.
  相似文献   

12.
A fluorometric ATP assay is described that makes use of carbon dots and graphene oxide along with toehold-mediated strand displacement reaction. In the absence of target, the fluorescence of carbon dots (with excitation/emission maxima at 360/447 nm) is strong and in the “on” state, because the signal probe hybridizes with the aptamer strand and cannot combine with graphene oxide. In the presence of ATP, it will bind to the aptamer and induce a strand displacement reaction. Consequently, the signal probe is released, the sensing strategy will change into the “off” state with the addition of graphene oxide. This aptasensor exhibits selective and sensitive response to ATP and has a 3.3 nM detection limit.
Graphical abstract Schematic of signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. This strategy exhibits high sensitivity and selectivity with a detection limit as low as 3.3 nM.
  相似文献   

13.
Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and utilized to construct a voltammetric biosensor for trichloroacetic acid (TCA). The biosensor was prepared by immobilizing hemoglobin (Hb) on a glassy carbon electrode (GCE) that was modified with the Ag@GNRs. Cyclic voltammetry revealed a pair of symmetric redox peaks, indicating that direct electron transfer occurs at the Hb on the Ag@GNR-film. The electron transfer rate constant is as high as 2.32 s?1. The good electrocatalytic capability and large surface area of the Ag@GNR-film is beneficial in terms of electron transfer between Hb and the underlying electrode. The modified GCE, best operated at ?0.4 V (vs. SCE), exhibits electrocatalytic activity toward TCA in the 0.16 μM to 1.7 μM concentration range, with a 0.12 μM detection limit (at an S/N ratio of 3).
Graphical abstract Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and used to immobilize hemoglobin to construct an effective biosensor for trichloroacetic acid.
  相似文献   

14.
An efficient approach is demonstrated for preparing particles consisting of a silver core and a shell of molecularly imprinted polymer (Ag@MIP). The MIP is prepared by using bisphenol A (BPA) as the template and 4-vinylpyridine as the functional monomer. The Ag@MIP fulfills a dual function in that the silver core acts as a SERS substrate, while the MIP allows for selective recognition of BPA. The Ag@MIP is characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis and Raman spectroscopy. The Raman intensity of Ag@MIP is higher than that of bare silver microspheres. The detection limit for BPA is as low as 10?9 mol·L?1.
Graphical abstract Schematic illustration of the preparation of silver microspheres coated with a molecularly imprinted polymer (Ag@MIPs) for detecting bisphenol A (BPA) by surface enhanced Raman scattering (SERS).
  相似文献   

15.
An electrochemical non-enzymatic glucose sensor based on copper nanorods (CuNRs) was developed. The CuNRs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, and X-ray photoelectron spectroscopy. The results display a layer of rough cuprous oxide that is formed on the surface of CuNRs. The CuNR- modified glassy carbon electrode exhibits an outstanding capability in terms of nonenzymatic sensing of glucose. The sensor displays high sensitivity (1490 μA?mM?1?cm?2), fast response time (less than 5 s), a low detection limit of 8 nM (S/N = 3), long term stability, and excellent anti-fouling ability. The sensor was applied to the detection of glucose in (spiked) human serum and in black ice tea, with relative standard deviations (for n = 6) of 1.7 % and 1.9 %, respectively.
Graphical abstract The surface of Cu nanorods was covered with cuprous oxide, which increased the surface area of the nanorods and provided more catalytic active sites for the electro-oxidation of glucose. Good linearity and selectivity were obtained in glucose sensing.
  相似文献   

16.
A rapid and sensitive aptamer-based assay is described for kanamycin, a veterinary antibiotic with neurotoxic side effects. It is based on a novel FRET pair consisting of fluorescent carbon dots and layered MoS2. This donor-acceptor pair (operated at excitation/emission wavelengths of 380/440 nm) shows fluorescence recovery efficiencies reaching 93 %. By taking advantages of aptamer-induced fluorescence quenching and recovery, kanamycin can be quantified in the of 4–25 μM concentration range, with a detection limit of 1.1 μM. The method displays good specificity and was applied to the determination of kanamycin in spiked milk where it gave recoveries ranging from 85 % to 102 %, demonstrating that the method serves as a promising tool for the rapid detection of kanamycin in milk and other animal-derived foodstuff.
Graphical Abstract A fluorometric aptasensor was developed for the determination of kanamycin. It is based on a novel FRET pair of carbon dots and layered MoS2. The fluorescence recovery efficiency reached 93 % with a good sensitivity, specificity and recoveries in spiked milk.
  相似文献   

17.
A conducting polymer composite was prepared from nano-sized hydroxyaptite (nHAp) doped into poly(3,4-ethylenedioxythiophene) (PEDOT) and then electrodeposited on a glassy carbon electrode (GCE). The nHAp carries carboxy groups and therefore is negatively charged at moderate pH value. When doped into PEDOT (PEDOT-nHAp), it forms a uniform and stable film that exhibits low electrochemical impedance, a large specific surface, and high activity toward the electrochemical oxidation of nitrite. Under optimized conditions and at a relatively low working potential of 0.78 V (vs. SCE), the modified GCE exhibited a linear amperometric response in the 0.25 μM to 1.05 mM nitrite concentration range, and the limit of detection is as low as 83 nM.
Graphical abstract A highly sensitive nitrite sensor was developed based on conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carboxyl group functionalized hydroxyapatite nanoparticles, which exhibited a large surface area and good conductivity and stability.
  相似文献   

18.
The authors describe a method for the fabrication of a nanohybrid composed of carbon dots (C-dots) and gold nanoparticles (AuNPs) by in-situ reduction of C-dots and hydroauric acid under alkaline conditions. The process does not require the presence of surfactant, stabilizing agent, or reducing agent. The hybrid material was deposited in a glassy carbon electrode (GCE), and the modified GCE exhibited good electrocatalytic activity toward the oxidation of nitrite due to the synergistic effects between carbon dots and AuNPs. The findings were used to develop an amperometric sensor for nitrite. The sensor shows a linear response in the concentration range from 0.1 μmol?L-1 to 2 mmol?L-1 and a low detection limit of 0.06 μmol?L-1 at the signal-to-noise ratio of 3.
Graphical abstract Fabrication, characterization and electrochemical behavior of a glassy carbon electrode modifid with carbon dots and gold nanoparticles for sensing nitrite in lake water.
  相似文献   

19.
This paper describes a CdTe quantum dot-based fluorescence resonance energy transfer (FRET) based assay for the detection of the breast cancer biomarker microRNA. The method relies on energy transfer between DNA-templated silver nanoclusters (AgNCs) and CdTe QDs. Interaction between double strand oligonucleotide and QDs can be detected qualitatively through gel analysis and quantitatively by the signal amplification from AgNCs to QDs via FRET, best measured at an excitation wavelength of 350 nm and at emission wavelengths of 550 and 590 nm. Three microRNAs (microRNA-21, microRNA-155 and Let-7a) were quantified to verify the feasibility of the method, and a high sensitivity for microRNAs was achieved. Fluorescence intensity increases linearly with the log of the concentration of microRNA 155 in the 5.0 pM to 50 nM range, with a 1.2 pM detection limit.
Graphical abstract Schematic presentation of a quantum dot-based (QD-based) fluorescence resonance energy transfer technique for the detection of microRNA (miRNA). The method relies on energy transfer between DNA-templated silver nanoclusters (AgNCs) and QDs.
  相似文献   

20.
Under visible-light irradiation, a cathodic photoelectrochemical (PEC) sensor is presented for highly sensitive determination of Cr(VI) at a potential of ?0.25 V (vs SCE). PbS quantum dots (QDs) were capped with mercaptoacetic acid and assembled on the surface of an indium tin oxide (ITO) electrode via the linker poly(diallyl dimethyl ammonium chloride) providing a photoactive sensor. Cr(VI) accepts the photoelectrons generated by the PbS QDs. This promotes the separation of electron holes and enhances the cathodic photocurrent generated by a 470-nm LED. The sensor has 10 pM detection limit and a linear working range from 0.02 nM to 2 μM of chromate. The method was successfully applied to the determination of Cr(VI) and total chromium in spiked environmental water samples.
Graphical abstract Schematic illustration of the photocurrent enhancement response of ITO/PbS toward chromium(VI). In the presence of Cr(VI) (red line), Cr(VI) accepts the photoelectrons generated by the PbS QDs under 470-nm LED irradiation, resulting in improved photocurrent of ITO/PbS.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号