首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Second-grade elastic materials featured by a free energy depending on the strain and the strain gradient, and a kinetic energy depending on the velocity and the velocity gradient, are addressed. An inertial energy balance principle and a virtual work principle for inertial actions are envisioned to enrich the set of traditional theoretical tools of thermodynamics and continuum mechanics. The state variables include the body momentum and the surface momentum, related to the velocity in a nonstandard way, as well as the concomitant mass-accelerations and inertial forces, which do intervene into the motion equations and into the force boundary conditions. The boundary traction is the sum of two parts, i.e. the Cauchy traction and the Gurtin–Murdoch traction, whereas the traction boundary condition exhibits the typical format of the equilibrium equation of a material surface (as known from the principles of surface mechanics) whereby the Gurtin–Murdoch traction (incorporating the inertial surface force) plays the role of applied surfacial force density. The body’s boundary surface constitutes a thin boundary layer which is in global equilibrium under all the external forces applied on it, a feature that makes it possible to exploit the traction Cauchy theorem within second-grade materials. This means that a second-grade material is formed up by two sub-systems, that is, the bulk material operating as a classical Cauchy continuum, and the thin boundary layer operating as a Gurtin–Murdoch material surface. The classical linear and angular momentum theorems are suitably extended for higher order inertia, from which the local motion equations and the moment equilibrium equations (stress symmetry) can be derived. For an isotropic material featured by four constants, i.e. the Lamé constants and two length scale parameters (Aifantis model), the dynamic evolution problem is characterized by a Hamilton-type variational principle and a solution uniqueness theorem. Closed-form solutions of the wave dispersion analysis problem for beam models are presented and compared with known results from the literature. The paper indicates a correct thermodynamically consistent way to take into account higher order inertia effects within continuum mechanics.  相似文献   

2.
Similarity analysis of the problem of axisymmetric free convection on a horizontal infinite plate of a micropolar fluid is considered assuming that the plate is subjected to a mixed thermal boundary condition. It is shown that the thermal boundary condition is characterized by a positive parameter m and the two cases of m = 0 and m = 1 correspond to prescribed plate temperature and prescribed surface heat flux respectively. If one has to compute the heat transfer coefficient for various values of m, there is no need to solve the boundary value problem every time; it is enough to solve a certain polynomial equation provided the solution is known for any particular value of m. Received on 3 November 1998  相似文献   

3.
By relying on the definition of admissible boundary conditions, the principle of virtual work and some kinematical considerations, we establish the skew-symmetric character of the couple-stress tensor in size-dependent continuum representations of matter. This fundamental result, which is independent of the material behavior, resolves all difficulties in developing a consistent couple stress theory. We then develop the corresponding size-dependent theory of small deformations in elastic bodies, including the energy and constitutive relations, displacement formulations, the uniqueness theorem for the corresponding boundary value problem and the reciprocal theorem for linear elasticity theory. Next, we consider the more restrictive case of isotropic materials and present general solutions for two-dimensional problems based on stress functions and for problems of anti-plane deformation. Finally, we examine several boundary value problems within this consistent size-dependent theory of elasticity.  相似文献   

4.
A new method for numerical simulation of failure behavior, namely, FEM-β, is proposed. For a continuum model of a deformable body, FEM-β solves a boundary value problem by applying particle discretization to a displacement field; the domain is decomposed into a set of Voronoi blocks and the non-overlapping characteristic functions for the Voronoi blocks are used to discretize the displacement function. By computing average strain and average strain energy, FEM-β obtains a numerical solution of the variational problem that is transformed from the boundary value problem. In a rigorous form, FEM-β is formulated for a variational problem of displacement and stress with different particle discretization, i.e., the non-overlapping characteristic function of the Voronoi blocks and the conjugate Delaunay tessellations, respectively, are used to discretize the displacement and stress functions. While a displacement field is discretized with non-smooth functions, it is shown that a solution of FEM-β has the same accuracy as that of ordinary FEM with triangular elements. The key point of FEM-β is the ease of expressing failure as separation of two adjacent Voronoi blocks owing to the particle discretization that uses non-overlapping characteristic functions. This paper explains these features of FEM-β with results of numerical simulation of several example problems.  相似文献   

5.
A unified analysis is presented for the elastic response of a pressurized cylindrically anisotropic hollow disk under assumed conditions of plane stress, or a hollow cylinder under plane strain conditions, and a spherically anisotropic hollow sphere, made of material which is nonuniform in the radial direction according to the power law relationship. The solution for a cylinder under generalized plane strain is also presented. Two parameters play a prominent role in the analysis: the material nonuniformity parameter m, and the parameter ?? which accounts for the combined effects of material anisotropy, represented by the specified parameters (??, ??, ??), and material nonuniformity, represented by the parameter m. The radial and circumferential stresses are the linear combinations of two power functions of the radial coordinate, whose exponents (n 1 and n 2) depend on the parameters m and ??. New light is added to the stress amplification and shielding under combined effects of curvilinear anisotropy and radial nonuniformity. Different loading combinations are considered, including the equal pressure at both boundaries, and the uniform pressure at the inner or the outer boundary. While the stress state for the equal pressure loading is uniform in the case of isotropic uniform material (m=0, ??=1), and for one particular radially nonuniform and anisotropic material, it is strongly nonuniform for a general anisotropic or nonuniform material. If the aspect ratio of the inner and outer radii decreases (small hole in a large disk/cylinder or sphere), the magnitude of the circumferential stress at the inner radius increases for n 1>0 (stress amplification), and decreases for n 1<0 (stress shielding). Both can be achieved by various combinations of the material parameters m, ??, ??, and ??. While the stress amplification in the case of a pressurized external boundary occurs readily, it occurs only exceptionally in the case of a pressurized internal boundary. The effects of material parameters on the displacement response are also analyzed. The approximate character of the plane stress solution of a pressurized thin disk is discussed and the results are compared with those obtained by numerical solution of the exact three-dimensional disk model.  相似文献   

6.
Criteria for the existence and uniqueness of solutions of div-curl boundary value problems on bounded planar regions with nice boundaries are developed. The boundary conditions to be treated include prescribed normal component of the field, tangential component of the field and disjoint combinations of these conditions. Under natural assumptions on the data, when either tangential or normal components are given on the whole boundary, weak (finite-energy) solutions exist if and only if a compatibility condition holds. If the region is simply connected this solution is unique. When the region is multiply connected, there is a finite-dimensional family of solutions. The dimension of the solution space is the Betti number of the region. The problem is well-posed with a unique solution when certain line integrals are further prescribed. L 2 estimates of the solutions are given. If mixed tangential, and normal, components of the field are specified on different parts of the boundary, no compatibility condition is required for solvability. In general, though, there is considerable non-uniqueness of solutions. Well-posedness is recovered by specifying certain line integrals. L 2 estimates of the solutions are given. The dimensionality of the solution space depends on the topology of the boundary data. These results depend on certain weighted orthogonal decompositions of L 2 vector fields on the region which are related to classical Hodge-Weyl decomposition results.  相似文献   

7.
In this paper, the periodic structure material is modeled as the continuum homogeneous micro-polar media subjecting to thermo-mechanical interaction. Meanwhile, a series of equivalent quantities such as the equivalent stress, couple stress, displacement gradient and torsion tensor were defined by the integral forms of the boundary values of the external surface force, moment, displacement and the angular displacement, and were proved to satisfy the equivalence conditions of virtual work. Based on above works, the displacement boundary value problem was established to deduce the equivalent constitutive equation. Assume the representative volume element is composed of the spatial cross-framework, and applying the boundary value problem of displacement on frame structures, the equivalent elastic coefficients, temperature coefficients of equivalent stress and the temperature gradient coefficients of equivalent couple stress are deduced. In addition, themethod can also be extended to the stress boundary value problem to deduce the equivalent constitutive equation. The calculations indicate that the equivalent result can be obtained from the two kinds of boundary value problems.  相似文献   

8.
Using the extension of Krasnoselskii's fixed point theorem in a cone, we prove the existence of at least one positive solution to the nonlinear nth order m-point boundary value problem with dependence on the first order derivative. The associated Green's function for the nth order m-point boundary value problem is given, and growth conditions are imposed on the nonlinear term f which ensures the existence of at least one positive solution. A simple example is presented to illustrate applications of the obtained results.  相似文献   

9.
The evolutive elastic-plastic analysis problem is addressed by a time/space discretization procedure via energy methods. Using the maximum plastic work theorem in conjuction with an assumed material evolutive model, the initial/boundary value problem of rate-form plasticity is transformed into a sequence of boundary value problems of deformation-theory plasticity (weighted step problems). The main purpose of the paper is to establish a couple of boundary/domain variational principles of deformation-theory plasticity, namely a constrained stationarity principle and a saddle-point one, each of which is able to characterize the solution of the typical step problem. Through suitable space discretizations by boundary and interior elements, the aforementioned principles are then given algebraic forms and the related Kuhn-Tucker conditions are shown to provide the symmetric sign-definite solving equation system for the fully discretized step problem.  相似文献   

10.
A unified thermodynamic framework for gradient plasticity theories in small deformations is provided, which is able to accommodate (almost) all existing strain gradient plasticity theories. The concept of energy residual (the long range power density transferred to the generic particle from the surrounding material and locally spent to sustain some extra plastic power) plays a crucial role. An energy balance principle for the extra plastic power leads to a representation formula of the energy residual in terms of a long range stress, typically of the third order, a macroscopic counterpart of the micro-forces acting on the GNDs (Geometrically Necessary Dislocations). The insulation condition (implying that no long range energy interactions are allowed between the body and the exterior environment) is used to derive the higher order boundary conditions, as well as to ascertain a principle of the plastic power redistribution in which the energy residual plays the role of redistributor and guarantees that the actual plastic dissipation satisfies the second thermodynamics principle. The (nonlocal) Clausius-Duhem inequality, into which the long range stress enters aside the Cauchy stress, is used to derive the thermodynamic restrictions on the constitutive equations, which include the state equations and the dissipation inequality. Consistent with the latter inequality, the evolution laws are formulated for rate-independent models. These are shown to exhibit multiple size effects, namely (energetic) size effects on the hardening rate, as well as combined (dissipative) size effects on both the yield strength (intrinsic resistance to the onset of plastic strain) and the flow strength (resistance exhibited during plastic flow). A friction analogy is proposed as an aid for a better understanding of these two kinds of strengthening effects. The relevant boundary-value rate problem is addressed, for which a solution uniqueness theorem and a minimum variational principle are provided. Comparisons with other existing gradient theories are presented. The dissipation redistribution mechanism is illustrated by means of a simple shear model.  相似文献   

11.
The dynamic behavior of a limited-permeable rectangular crack in a transversely isotropic piezoelectric material is impinged by to a P-wave. The generalized Almansi theorem and the Schmidt method are used to determine the stress intensity factor and energy density factor as the primary fracture criterion of failure. The mixed boundary value problem entails the evaluation of the appropriate crack edge stress singularities that are characteristics of the fundamental functions. The stress and electric displacement intensity factors are also used to find the energy release rate that can be computed numerically and compared with the results corresponding to those of the stress intensity factor, and energy density factor. Graphical presentation shows that the energy release rate is always negative for the boundary conditions considered while the energy density factors always remain positive. Under certain conditions, the stress and electric displacement intensity factors can be negative and subject to physical limitations. Piezoelectric material boundary value problem solutions should therefore be qualified by the application of failure criteria by fracture of otherwise, particularly when the mechanical and electrical energy can release by creating free surface at the macroscopic and microscopic scales. Negative energy release rate found for the piezoelectric medium in this work can be a case in point.Positive definiteness of the energy density factor can be applied to mutliscale fracture. This is not true for the stress intensity factor nor the energy release rate. Hence, crack initiation behavior for the permittivity of a rectangular crack due to the wave propagation effects may be studied. In particular, the initiation of micro-cracks may be identified with certain critical stress wave frequency band. Negative stress intensity factor may not enhance macrocracking but it does not exclude microcrack initiation.  相似文献   

12.
The solutions of a boundary value problem are explored for various classes of generalised crystal plasticity models including Cosserat, strain gradient and micromorphic crystal plasticity. The considered microstructure consists of a two-phase laminate containing a purely elastic and an elasto-plastic phase undergoing single or double slip. The local distributions of plastic slip, lattice rotation and stresses are derived when the microstructure is subjected to simple shear. The arising size effects are characterised by the overall extra back stress component resulting from the action of higher order stresses, a characteristic length lc describing the size-dependent domain of material response, and by the corresponding scaling law ln as a function of microstructural length scale, l. Explicit relations for these quantities are derived and compared for the different models. The conditions at the interface between the elastic and elasto-plastic phases are shown to play a major role in the solution. A range of material parameters is shown to exist for which the Cosserat and micromorphic approaches exhibit the same behaviour. The models display in general significantly different asymptotic regimes for small microstructural length scales. Scaling power laws with the exponent continuously ranging from 0 to −2 are obtained depending on the values of the material parameters. The unusual exponent value −2 is obtained for the strain gradient plasticity model, denoted “curl Hp” in this work. These results provide guidelines for the identification of higher order material parameters of crystal plasticity models from experimental data, such as precipitate size effects in precipitate strengthened alloys.  相似文献   

13.
Solutions to periodic boundary value problems involving nontrivial body forces on bodies containing the upper half plane or space are examined. It is shown that, corresponding to each periodic strain solution, there is a relatively simple and easily computed asymptotic state. It is further shown that the error in using this asymptotic state rather than the actual solution decreases exponentially with the distance from the boundary.Implications of this behavior with regard to such topics as Saint Venant's principle, the theorem of work and energy, the uniqueness of solutions to periodic and non-periodic boundary value problems are also briefly discussed.  相似文献   

14.
Knops  R.J.  Trimarco  C.  Williams  H.T. 《Meccanica》2003,38(5):519-534
Global uniqueness of the smooth stress and deformation to within the usual rigid-body translation and rotation is established in the null traction boundary value problem of nonlinear homogeneous elasticity on a n-dimensional star-shaped region. A complementary energy is postulated to be a function of the Biot stress and to be para-convex and rank-(n-1) convex, conditions analogous to quasi-convexity and rank-(n-2) of the stored energy function. Uniqueness follows immediately from an identity involving the complementary energy and the Piola-Kirchhoff stress. The interrelationship is discussed between the two conditions imposed on the complementary energy, and between these conditions and those known for uniqueness in the linear elastic traction boundary value problem.  相似文献   

15.
Summary The mixed boundary value problem for a transversely isotropic elastic half-space is considered for the case when uniform tangential displacements are prescribed over several domains of arbitrary shape, and the rest of the half-space boundary is stress free. The problem can be interpreted either as that of two elastic half-spaces interconnected by several regions of general shape and subjected to remote shear loading, or as a contact problem of several flexible punches, connected to the half-space, with different tangential displacements prescribed. A general theorem is established which relates the resulting tangential forces, acting on each domain, with their generalized displacements through a system of linear algebraic equations. The theorem is applied to the case of arbitrarily located elliptical domains subjected to uniform tangential displacements. Several specific examples are considered.
Der elastische halbraum mit einigen randbereichen vorgegebener tangentialverschiebung
Übersicht Behandelt wird das gemischte Randwertproblem für einen transversal-isotropn olastischen Halbraum, wenn eine gleichmäßaige Tangentialverschiebung einiger Oberflächenbereiche beliebiger Gestalt vorgeschrieben und der Rest des Randes spannungsfrei ist. Die Aufgabenstellung kann auf zweierlei Weise interpretiert werden: Als zwei elastische Halbräume, die längs einiger beliebig gestalteter Randbereiche miteinander verbunden sind, oder als das Kontaktproblem des Halbraumes mit einigen flexiblen Stempeln, für die verschiedene Tangentialverschiebungen vorgegeben sind. Aufgestellt wird ein allgemeines Theorem, welches die resultierenden Tangentialkräfte auf allen Bereichen mit ihren Verschiebungen durch ein System linearer algebraischer Gleichungen verknüpft. Angewandt wird das Theorem auf elliptische Bereiche mit beliebiger Position und gleichförmiger Tangentialverschiebung. Einige spezielle Beispiele werden vorgestellt.
  相似文献   

16.
Let Ω be a 2-dimensional bounded domain, symmetric with respect to the x2-axis. The boundary has several connected components, intersecting the x2-axis. The boundary value is symmetric with respect to the x2-axis satisfying the general outflow condition. The existence of the symmetric solution to the steady Navier–Stokes equations was established by Amick [2] and Fujita [4]. Fujita [4] proved a key lemma concerning the solenoidal extension of the boundary value by virtual drain method. In this note, we give a different proof via elementary approach by means of the stream function.  相似文献   

17.
This is a study on the initial and boundary value problem of a symmetric hyperbolic system which is related to the conduction of heat in solids at low temperatures. The nonlinear system consists of a conservation equation for the energy density e and a balance equation for the heat flux , where e and are the four basic fields of the theory. The initial and boundary value problem that uses exclusively prescribed boundary data for the energy density e is solved by a new kinetic approach that was introduced and evaluated by Dreyer and Kunik in [1], [2] and Pertame [3]. This method includes the formation of shock fronts and the broadening of heat pulses. These effects cannot be observed in the linearized theory, as it is described in [4]. The kinetic representations of the initial and boundary value problem reveal a peculiar phenomenon. To the solution there contribute integrals containing the initial fields as well as integrals that need knowledge on energy and heat flux at a boundary. However, only one of these quantities can be controlled in an experiment. When this ambiguity is removed by continuity conditions, it turns out that after some very short time the energy density and heat flux are related to the initial data according to the Rankine Hugoniot relation. Received October 6, 1998  相似文献   

18.
We show that a smooth solution u 0 of the Euler boundary value problem on a time interval (0, T 0) can be approximated by a family of solutions of the Navier–Stokes problem in a topology of weak or strong solutions on the same time interval (0, T 0). The solutions of the Navier–Stokes problem satisfy Navier’s boundary condition, which must be “naturally inhomogeneous” if we deal with the strong solutions. We provide information on the rate of convergence of the solutions of the Navier–Stokes problem to the solution of the Euler problem for ν → 0. We also discuss possibilities when Navier’s boundary condition becomes homogeneous.  相似文献   

19.
The stationary Navier–Stokes system with nonhomogeneous boundary conditions is studied in a class of domains Ω having “paraboloidal” outlets to infinity. The boundary ${\partial\Omega}$ is multiply connected and consists of M infinite connected components S m , which form the outer boundary, and I compact connected components Γ i forming the inner boundary Γ. The boundary value a is assumed to have a compact support and it is supposed that the fluxes of a over the components Γ i of the inner boundary are sufficiently small. We do not pose any restrictions on fluxes of a over the infinite components S m . The existence of at least one weak solution to the Navier–Stokes problem is proved. The solution may have finite or infinite Dirichlet integral depending on geometrical properties of outlets to infinity.  相似文献   

20.
Two-dimensional solutions of the electric current, magnetic field and magneto elastic stress are presented for a magnetic material of a thin infinite plate containing an elliptical hole with an edge crack under uniform electric current. Using a rational mapping function, the each solution is obtained as a closed form. The linear constitutive equation is used for the magnetic field and the stress analyses. According to the electro-magneto theory, only Maxwell stress is caused as a body force in a plate which raises a plane stress state for a thin plate and the deformation of the plate thickness. Therefore the magneto elastic stress is analyzed using Maxwell stress. No further assumption of the plane stress state that the plate is thin is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition expressed by Maxwell stress components is completely satisfied without any linear assumptions on the boundary. First, electric current, magnetic field and stress analyses for soft ferromagnetic material are carried out and then those analyses for paramagnetic and diamagnetic materials are carried out. It is stated that the stress components are expressed by the same expressions for those materials and the difference is only the magnitude of the permeability, though the magnetic fields Hx, Hy are different each other in the plates. If the analysis of magnetic field of paramagnetic material is easier than that of soft ferromagnetic material, the stress analysis may be carried out using the magnetic field for paramagnetic material to analyze the stress field, and the results may be applied for a soft ferromagnetic material. It is stated that the stress state for the magnetic field Hx, Hy is the same as the pure shear stress state. Solving the present magneto elastic stress problem, dislocation and rotation terms appear, which makes the present problem complicate. Solutions of the magneto elastic stress are nonlinear for the direction of electric current. Stresses in the direction of the plate thickness are caused and the solution is also obtained. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived and investigated for the crack length and the electric current direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号