首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of complex formation for poly-N-vinyl carbazole and its saturated low molecular analogue, N-ethyl carbazole, with tetracyanoethylene, chloranil, trinitrobenzene and picric acid in chloroform solution have been investigated at molar ratios of donor to acceptor, D/A = 1, 2, 4, 8 and 10. The reaction rate was studied by the “stopped flow” method. At mole ratio D/A > 1 the complex forming reactions follow kinetics of first order. The apparent rate constants were calculated by the least squares method. The complex formation rate constants for the monomer analogue are higher than those for the polymer. They also depend on the electron affinity of the acceptor. The reaction rate rises with increase of the electron affinity of the acceptor.  相似文献   

2.
劳文剑  李聪  台虹  尤进茂 《化学研究》2014,(3):260-263,268
研究了咔唑、咔唑-9-乙酸、3-溴-咔唑-9-乙酸在缺氧条件下对天然苝醌化合物痂囊腔菌素A(简记为EA)的荧光猝灭行为;由竹红菌甲素(HA)和乙素(HB)的荧光寿命估算了EA在乙腈中的荧光寿命,并进而计算了三个咔唑化合物的双分子猝灭速度常数.结果表明,三个咔唑化合物在EA的可见光吸收区无光吸收,据此推测其对EA的荧光猝灭作用归因于咔唑化合物作为电子给体而EA作为电子受体的光致电子转移作用.三个咔唑化合物的Stern-Volmer猝灭常数分别为698、704和1 063L·mol-1;乙酸基对咔唑环的光致电子转移速率几乎没有影响,而溴原子取代能够增加咔唑化合物对EA的荧光猝灭程度和光致电子转移速率.此外,EA在乙腈中的荧光寿命为1.98ns,而三个咔唑化合物的双分子猝灭速率常数分别为3.52×1011,3.56×1011和5.37×1011 L·mol-1·s-1.  相似文献   

3.
Several dyads consisting of a fluoreseein covalently linked with a carhazole at site 2 or site 6 have been synthesized and characterized.Studies of absorption spectra,emission spectra and fluorescence lifetime quern hing Indicate that the ground-state interaction between fluorescein and carhazole in dyads is negligible and the intramolecular electron transfer (ET) reactions are mainly of dynamic process.Moreover,the efficiency and raie conslam of lectron transfer reactions in ZFO4 (carbazole linked at site 2'of fluorescein) are larg er than those in 4FOZ (carbazole linked at site 6 of fluorescein) 0 74; KET 11×108S-1),because the mutual orientation of donor and acceptor in ZFO4 is nearly face-to-face,which is more favorable to the process than the shoulder-to-shoulder mutual orientation in 4FOZ.Estimations are also formed of the free energy change of the photomduced electron transfer and the back reactions in the dyads.  相似文献   

4.
Mechanisms of carbazole photoluminescence quenching by the free and chemically bound nitroxyl radicals in the model bound system “carbazole (CBZ)—imidazolidine nitroxyl radical R” were investigated and the photophysical properties of the system were studied and compared with those of free CBZ and R in solution. The quantum yield and lifetime of fluorescence from the local singlet excited state of the carbazole moiety in the bound CBZ—R system is three orders of magnitude lower than in free CBZ. The lifetime of the local triplet excited state of the carbazole moiety in the bound system is shorter than 50 ns. The rate constants for intermolecular quenching of the singlet and triplet excited states of free CBZ by R in acetonitrile were found to be (1.4±0.1)·1010 and (1.5±0.2)·109 L mol−1 s−1, respectively. The most plausible mechanisms of both free and covalently bound carbazole luminescence quenching by nitroxyl radicals are exchange energy transfer and acceleration of internal conversion due to electron exchange.  相似文献   

5.
We have synthesized novel carbazole dendrimers via the cyclotrimerization of aminophenylketones in the presence of titanium tetrachloride. These dendrimers have the ability to assemble metal ions such as Sn2+ and Eu3+ with no significant difference in their generation, suggesting the dendrimer with an interior with a small density up to the third generation. We show the dendrimers with higher generations have the higher HOMO values. The most electron rich molecule, the G3 dendrimer, has the highest HOMO value of −5.2 eV. However, for the HOMO energy levels of the carbazole dendrimer complex with Eu(OTf)3, the energy levels of the carbazoles did not change based on almost the same redox potentials as those of the dendrimers, themselves. Using the carbazole dendrimers and their europium complex, a homogeneous film was produced, which enhanced the performance of the electroluminescence device in comparison with only the dendrimer as the hole-transporting layer. This approach was managed by a solution process, i.e., the spin-coating method, without using the coevaporation technique based on the large equilibrium constants of the coordination of metal ions on the imine sites (K = 105 M−1).  相似文献   

6.
The flash photolysis of aqueous solutions of rhodizonic and croconic acids has been studied in the presence and absence of electron acceptors. No transient absorption which could be identified with an excited state was observed with either anion. The rate of recovery of the ground state in the absence of additives was a first-order process with both acids and gave rate constants for deactivation of the excited state, kD, of 2.4 × 105 s?1 for rhodizonate and 2.8 × 105 s?1 for croconate. With croconate dianion in the presence of three acceptors, 4-nitrobenzylbromide, methylviologen, and biacetyl, a transient absorption was detected, with a maximum absorbance at 500 nm, and was tentatively identified with the monoanion radical, formed following electron transfer to the acceptor. From the rate of growth of the transient, rate constants for the rate of electron transfer to the acceptor were measured as follows: 4-nitrobenzylbromide: 2.8 × 109 M?1 s?1; methyl viologen: 3.7 × 1010 M?1 s?1; and biacetyl: 2.0 × 108 M?1 s?1. The significance of the measurements is discussed in relation to the mechanism proposed for the photochemical reactions of these dianions. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Laser flash absorption spectroscopy has been used to investigate the kinetics of electron transfer from P700 in Photosystem I (PSI)-enriched particles from spinach to the ferredoxins from spinach and the green alga Monoraphidium braunii. Very similar behavior for the interaction of both ferredoxins with the PSI complex was observed, although the algal ferredoxin appears to be slightly more effective as an electron acceptor. For both proteins, a non-linear protein concentration dependence of the rate constant for reduction was obtained, indicating complex formation preceding electron transfer. Estimates of 3 times 107M?1 s?1 and 140–180 s?l were obtained from these data for the second order rate constants for complex formation, and the limiting first order rate constants for electron transfer, respectively. At neutral pH, a biphasic dependence of the rate constant for ferredoxin reduction on the concentration of NaCl or MgCl2 was observed. This was interpreted in terms of the electrostatic interactions which occur between ferredoxin and the PSI membrane. In addition, magnesium cations appear to play a specific role in the interaction between PSI and ferredoxin. Thus, the addition of these ions under optimal conditions induces a 6-f-old increase in the electron transfer reaction rate constant, compared with a 2-f-old increase in the presence of an optimal amount of NaCI. This cannot be explained as arising from ionic strength effects. To our knowledge, this is the first time that a direct measurement of the rate constant for the reduction of ferredoxin by the PSI complex has been reported.  相似文献   

8.
Hole burning as well as fluorescence line narrowing experiments have been performed on the system dimethyl-s-tetrazine in polyvinyl carbazole films at low temperatures. The first singlet electronic absorption bands are typical (300 cm?3 wide) of inhomogeneously broadened bands of guest molecules in amorphous organic hosts. Evidence is presented for both photochemical and nonphotochemical hole burning. The narrowest holes observed were lorentzian, had a width of 0.44 cm?1 at 1.8 K, and are believed to be of nonphotochemical origin. A model which envisions the guest molecules to occupy different sites in the polymer host with a distribution of energy barriers between sites is used to describe these observations. The fast (20 ps) relaxation time implied by the 0.44 cm?1 lorentzian linewidth is interpreted as indicative of the rate of site interconversion in the excited state.  相似文献   

9.
Simple separation of carbazole and anthracene from monosubstituted anthraquinones is achieved through the application of the zone-melting technique used biphenyl as a medium. Determination limits for both compounds measured by synchronous fluorimetry are 2 μg g?1 in 2-methyl-, 2-ethyl-, 1-hydroxy- and 1-chloroanthraquinones, and 10 μg g?1 in another four derivatives.  相似文献   

10.
The complex formation reaction between N,N′-bis(2-pyridylmethylidene)-1,2-diiminoethane (BPIE) di-Schiff base ligand as an electron donor and iron(III) chloride as an electron acceptor have been studied spectrophometrically in methanol at 28°C. The values of equilibrium constants, K and molar absorptivities, ε were obtained from the Benesi–Hildebrand, Scott and Foster–Hammick–Wardley equations. The results indicate the formation of 1?:?1 charge transfer complex. The absorption band energy of the complex, E CT, the ionization potential of the BPIE Schiff base ligand, I D, and the Gibbs energy changes of the above reaction, ΔG 0, were calculated. Finally, the kinetics of the complex formation reaction were studied and was found to be second-order in each reactant. The values of the rate constants of the forward and reverse reactions k 1 and k ?1 were determined.  相似文献   

11.
Two new poly(phenylene vinylene)s (PPVs) carrying electron‐donating triphenylamine or carbazole and electron‐deficient quinoxaline units were synthesized and characterized. Their properties were compared with those of PPV containing only quinoxaline unit. The two polymers showed PL maximum at 501–510 in solution and 533–540 in thin film. Because of the presence of electron donor and acceptor units they displayed strong intramolecular charge transfer (ICT) effects; hence, low‐photoluminescence quantum yields. The polymers showed reversible electrochemical reduction with electron affinity of 2.75 eV and irreversible oxidation with ionization potential of 5.10–5.24 eV. Single‐layer LED of configuration ITO/PEDOT/polymer/Al showed low turn‐on voltage at 5 V, but limited brightness of 50–60 cdm?2. The electroluminescence maximum was voltage‐tunable varying from 500 to 542 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2367–2378, 2008  相似文献   

12.
Polyesters based on N-butyl or N-octylcarbazole units in the main chain were synthesized either by direct polycondensation between the carbazole dicarboxylic acids and ethylene glycol or from alcoholysis of the 2-hydroxyethyl diesters in the presence of different catalytic systems. Depending on the reaction conditions together with the nature and the concentration of the catalyst, diethylene glycol (DEG) is formed as a side-reaction product. DEG is incorporated in the polyester chain concurrently with EG and leads to the formation of ether links in the spacers. The DEG content as well as the length of the alkyl pendant group of the carbazole unit were found to have a drastical effect on the thermal properties. Furthermore, these materials form charge transfer complexes through carbazole nuclei with electron acceptor and electron donor molecules as well.  相似文献   

13.
Abstract Laser flash photolysis has been used to compare the kinetics of reduction of ferredoxin isoforms from the green alga Monoraphidium braunii, and the ferredoxin and flavodoxin from the cyanobacterium Anabaena PCC 7119, by 5-deazariboflavin semiquinone (dRM) and the viologen analogue 1,l‘-propylene-2,2′-bipyridyI (PDQ +). Similar ionic strength-independent second-order rate constants (1.4 × 108M?1 s ?1) were obtained for the reduction of both algal ferredoxin isoforms by dRM For the reduction of oxidized flavodoxin by dRM, a more complex behavior was observed, with a second-order rate constant for dRM. decay of 1.8 × 108M?1 S?1, and a first-order (i.e. protein concentration independent) rate constant of 450 s?1, that probably corresponds to the protonation of the FMN semiquinone cofactor, which occurs subsequent to electron transfer. A value of 5 × 107M?1 S?1 was obtained for the second-order rate constant of flavodoxin semiquinone reduction by dRM The reduction of ferredoxins and flavodoxin semiquinone by PDQ + showed nonlinear protein concentration dependencies, consistent with a minimal two-step mechanism involving complex formation followed by intracomplex electron transfer. A negative ionic strength effect on the kinetic constants was obtained, indicating the existence of attractive electrostatic interactions during electron transfer. With all the ferredoxins the k values (rate constants extrapolated to infinite ionic strength) for the second-order step of the reduction process (complex formation) are smaller than previously reported for spinach ferredoxin, although Anabaena ferredoxin is somewhat more reactive than are the algal ferredoxins with the viologen. In contrast, the k values for the first-order component of ferredoxin reduction (intracomplex electron transfer) for the algal ferredoxins are comparable to that for spinach ferredoxin, whereas for this reaction the ferredoxin from Anabaena has a smaller intrinsic reactivity. As compared with the ferredoxins, Anabaena flavodoxin has significantly smaller k values for its interaction with the viologen analogue, both for complex formation and for electron transfer. In all cases the existence of nonproductive electrostatic interactions between the viologen analogue and the proteins is suggested by the data.  相似文献   

14.
New multi‐modular donor–acceptor conjugates featuring zinc porphyrin (ZnP), catechol‐chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C60), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction‐center mimics. The X‐ray structure of triphenylamine‐BDP is also reported. The wide‐band capturing polyad revealed ultrafast energy‐transfer (kENT=1.0×1012 s?1) from the singlet excited BDP to the covalently linked ZnP owing to close proximity and favorable orientation of the entities. Introducing either fullerene or naphthalenediimide electron acceptors to the TPA‐BDP‐ZnP triad through metal–ligand axial coordination resulted in electron donor–acceptor polyads whose structures were revealed by spectroscopic, electrochemical and computational studies. Excitation of the electron donor, zinc porphyrin resulted in rapid electron‐transfer to coordinated fullerene or naphthalenediimide yielding charge separated ion‐pair species. The measured electron transfer rate constants from femtosecond transient spectral technique in non‐polar toluene were in the range of 5.0×109–3.5×1010 s?1. Stabilization of the charge‐separated state in these multi‐modular donor–acceptor polyads is also observed to certain level.  相似文献   

15.
We present the enhanced photorefractive performance of high molecular weight poly(N‐vinyl carbazole) (PVCz)‐based composites. Higher diffraction efficiency with faster speed of grating build‐up was obtained by optimizing the composition of the PVCz composites. At relatively low applied electric field of E = 45 V μm?1, diffraction efficiency of 26% for p‐polarized probe beam and corresponding that of 5.1% for s‐polarized probe beam were measured with faster grating build‐up speed of 48.3 s?1 for the composite with 2,4,7‐trinitrofluorenone (TNF) as a sensitizer. Fastest speed of grating build‐up of 100 s?1 and large optical gain up to 110 cm?1 were measured at E = 80 V μm?1 for the composite with fullerene derivative of PCBM as a sensitizer. These improved performances are due to a large orientational enhancement effect with faster response speed in addition to Pockels effect for the samples with appropriate glass transition temperature. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

16.
Solubilities are reported for carbazole in three binary chloroalkane + dibutyl ether solvent mixtures at 25°C. Results of these measurements are compared with solution models developed for solubility in systems containing specific solute-solvent interactions. A simple model based on a single 1:1 carbazole:dibutyl ether complex described the solubility data, though the calculated equilibrium constant was about one-half of values published previously. A more sophisticated solution model, which assumes both carbazole:dibutyl ether and carbazole:chloroalkane complexes, was needed to thermodynamically describe the systems studied. Equilibrium constants for three presumed carbazole:chloroalkane complexes are calculated from measured carbazole solubilities.  相似文献   

17.
The photoluminescence (PL), electrochemical, and electroluminescence (EL) properties of EuIII complexes, [Eu(cppo)2(tta)3] ( 1 ) and [Eu(cpo)2(tta)3] ( 2 ; TTA=2‐thenoyltrifluoroacetonate) with two carbazole‐based phosphine oxide ligands, 9‐[4‐(diphenylphosphinoyl)phenyl]‐9H‐carbazole (CPPO) and 9‐(diphenylphosphoryl)‐9H‐carbazole (CPO), which have different bipolar structures, donor–π‐spacer–acceptor (D–π–A) or donor–acceptor (D–A) systems respectively, are investigated. The CPPO with D–π–A architecture has improved PL properties, such as higher PL efficiency and more efficient intramolecular energy transfer, than CPO with the D–A architecture. Gaussian simulation proved the bipolar structures and the double‐carrier injection ability of the ligands. The carrier injection abilities of triphenylphosphine oxide, CPO, and CPPO are gradually improved. Notably, the Gaussian and electrochemical investigations indicate that before and after coordination, the carrier injection ability of the ligands show remarkable changes because of the particularity of the D‐π–A and D–A systems. The electrochemical studies demonstrate that coordination induces the electron cloud to migrate from electron‐rich carbazole to electron‐poor diphenylphosphine oxide, and consequently increases the electron‐cloud density on diphenylphosphine oxide, which weakens its ability for electron affinity and induces the elevation of LUMO energy levels of the complexes. Significantly, the π‐spacer in the D–π–A system exhibits a distinct buffer effect on the variation of the electron‐cloud density distribution of the ligand, which is absent in the D–A system. It is demonstrated that the adaptability of the D–π–A systems, especially for coordination, is stronger than that of D–A systems, which facilitates the modification of the complexes by designing multifunctional ligands purposefully. 1 seems favorable as the most efficient electroluminescent EuIII complex with greater brightness, higher efficiencies, and more stable EL spectra than 2 . These investigations demonstrate that the phosphine oxide ligands with D–π–A architecture are more appropriate than those with D–A architecture to achieve multifunctional electroluminescent EuIII complexes.  相似文献   

18.
Broadband dielectric spectroscopy was used to study the electric properties of solutions of reverse AOT/water micelles in hexane. An analysis of the frequency dependences of the complex electric modulus allowed us to find the region of frequencies in which dc-conductivity was observed and exclude the region of electrode effects. At frequencies f of ~ 104Hz, the field dependences of dc-conductivity changed from linear (the Ohm law) to quadratic (the Mott law) as the volume fraction of micelles increased. This was evidence of a strengthening of the effect of current limitation by a volume charge. The upper and lower limits of the drift mobility of carriers μ responsible for dc-conductivity were estimated as 0.1 cm?2 V?1 s?1 < μ < 0.3 cm?2 V?1 s?1, which was close to the mobility of electrons in hexane. This allowed us to relate the nature of current carriers to that of free electrons; the activation energy of electron creation was found to be E a ≈ 0.41 eV. The electron lifetime up to its trapping by acceptors was estimated. The results obtained and the literature data on the rate constants of such reactions led us to conclude that micelles were capable of absorbing acceptor impurities from solvents (additional solvent purification).  相似文献   

19.
Absolute rate constants and their temperature dependencies were measured for the reaction of tert-butyl radicals with 24 substituted ethenes and several other compounds in 2-propanol solution by time-resolved electron spin resonance. At 300 K the rate constants cover the range from 60 M?1 s?1 (1,2-dimethylene) over 16,500 M?1 s?1 (vinyl-chloride) to 460,000 M?1 s?1 (2-vinylpyridine). For the mono- and 1,1-disubstituted ethenes log k300 increases and the activation energy decreases with increasing electron affinity of the olefins. The frequency factors are in the range log A/M?1 s?1 = 7.5 ± 1.0 as typical for addition reactions, with minor exceptions. Electron affinity (polar) and steric effects on reactivity are separated for the addition of tert-butyl to chloro- and methyl-substituted ethylenes. A comparison with rate data for methyl, ethyl, 2-propyl, and other radicals indicates both polar and steric effects on radical substitution.  相似文献   

20.
The reactions of tert-butoxyl radicals with amines, leading to the formation of α-aminoalkyl radicals, and the reactions of these with the electron acceptor methyl viologen have been examined using laser flash photolysis techniques. For example, the radicals CH3?HNEt2 and HOCH2?H N(CH2CH2OH)2 react with methyl viologen with rate constants equal to (1.3 ± 0.1) × 109 and (2.1 ± 0.4) × 109M?1 · s?1, respectively, in wet acetonitrile at 300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号