首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV rays may cause several degrees of skin damage, which makes sunscreen research necessary. In addition, skin sensitivity shows daily variations, which can interfere in the detection of the efficacy of the filters. Here, we studied the UV‐induced erythema in hairless rats at two times of the day (light and darkness) using a colorimeter method. The effect of an emulsion with solar filters with or without melatonin was also assayed. Results indicate that the value of a* (from CIELAB color space values L* a* b) was the most useful variable to evaluate the erythema. However, at the UV intensity used, erythema was only detected when irradiation was carried out during the activity phase of the animal, enabling the detection of the protective action of the sunscreen at this time. Thus, daily variations in skin sensitivity have been demonstrated and should be taken into account in dermatological research.  相似文献   

2.
Cutaneous exposure to solar ultraviolet (UV) radiation is a major causative factor in skin carcinogenesis, and improved molecular strategies for efficacious chemoprevention of nonmelanoma skin cancer (NMSC) are urgently needed. Toll‐like receptor 4 (TLR4) signaling has been shown to drive skin inflammation, photoimmunosuppression, and chemical carcinogenesis. Here we have examined the feasibility of genetic and pharmacological antagonism targeting cutaneous TLR4 for the suppression of UV‐induced NF‐κB and AP‐1 signaling in keratinocytes and mouse skin. Using immunohistochemical and proteomic microarray analysis of human skin, we demonstrate for the first time that a significant increase in expression of TLR4 occurs in keratinocytes during the progression from normal skin to actinic keratosis, also detectible during further progression to squamous cell carcinoma. Next, we demonstrate that siRNA‐based genetic TLR4 inhibition blocks UV‐induced stress signaling in cultured keratinocytes. Importantly, we observed that resatorvid (TAK‐242), a molecularly targeted clinical TLR4 antagonist, blocks UV‐induced NF‐κB and MAP kinase/AP‐1 activity and cytokine expression (Il‐6, Il‐8, and Il‐10) in cultured keratinocytes and in topically treated murine skin. Taken together, our data reveal that pharmacological TLR4 antagonism can suppress UV‐induced cutaneous signaling, and future experiments will explore the potential of TLR4‐directed strategies for prevention of NMSC.  相似文献   

3.
UVB (280–315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal‐regulated kinase (ERK) and AKT activation and their activation are both required for UVB‐induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB‐induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB‐induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.  相似文献   

4.
Currently, titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various applications including cosmetics, food additives and biomedicine. However, there are few reports available using TiO2 NPs to treat ocular diseases. Posterior capsular opacification (PCO) is the most frequent complication after cataract surgery, which is induced by the proliferation and migration of lens epithelial cells. Thus, inhibiting the proliferation of lens epithelial cells will efficiently reduce the occurrence of PCO. In this study, we investigated the effects of TiO2 NPs on HLE B‐3 cells with or without ultraviolet B (UVB) irradiation in vitro. We found that TiO2 NPs can inhibit HLE B‐3 cell growth, cause the elevation of intracellular [Ca2+], produce excessive reactive oxygen species (ROS), further reduce Ca2+‐ATPase activity and decrease the expression of plasma membrane calcium ATPase 1 (PMCA1), finally disrupt the intracellular calcium homeostasis and induce cell damage. Importantly, UVB irradiation can apparently enhance these effects on HLE B‐3 cells in the presence of TiO2 NPs. Taken together, the generation of excessive ROS and the disruption of intracellular calcium homeostasis may be both involved in TiO2 nanoparticle‐induced HLE B‐3 cell damage under UVB irradiation.  相似文献   

5.
UVA‐driven photooxidative stress in human skin may originate from excitation of specific endogenous chromophores acting as photosensitizers. Previously, we have demonstrated that 3‐hydroxypyridine‐derived chromophores including B6‐vitamers (pyridoxine, pyridoxamine and pyridoxal) are endogenous photosensitizers that enhance UVA‐induced photooxidative stress in human skin cells. Here, we report that the B6‐vitamer pyridoxal is a sensitizer of genotoxic stress in human adult primary keratinocytes (HEKa) and reconstructed epidermis. Comparative array analysis indicated that exposure to the combined action of pyridoxal and UVA caused upregulation of heat shock (HSPA6, HSPA1A, HSPA1L, HSPA2), redox (GSTM3, EGR1, MT2A, HMOX1, SOD1) and genotoxic (GADD45A, DDIT3, CDKN1A) stress response gene expression. Together with potentiation of UVA‐induced photooxidative stress and glutathione depletion, induction of HEKa cell death occurred only in response to the combined action of pyridoxal and UVA. In addition to activational phosphorylation indicative of genotoxic stress [p53 (Ser15) and γ‐H2AX (Ser139)], comet analysis indicated the formation of Fpg‐sensitive oxidative DNA lesions, observable only after combined exposure to pyridoxal and UVA. In human reconstructed epidermis, pyridoxal preincubation followed by UVA exposure caused genomic oxidative base damage, procaspase 3 cleavage and TUNEL positivity, consistent with UVA‐driven photooxidative damage that may be relevant to human skin exposed to high concentrations of B6‐vitamers.  相似文献   

6.
Solar radiation and cigarette smoke are two environmental risk factors known to affect skin integrity. Although the toxic effects of these factors on skin have been widely studied separately, few studies have focused on their interaction. The objective of this study was to evaluate and understand the synergistic harmful effects of cigarette smoke and solar rays on human primary keratinocytes. The keratinocytes were exposed to cigarette smoke extract (CSE) and then irradiated with a solar simulator light (SSL). The viability, as determined by measuring metabolic activity of skin cells, and the levels of global reactive oxygen species (ROS) were evaluated after exposure to CSE and SSL. The combination of 3% CSE with 29 kJ m−2 UVA caused a decrease of 81% in cell viability, while with 10% to 20% CSE, the cell viability was null. This phototoxicity was accompanied by an increase in singlet oxygen but a decrease in type I ROS when CSE and SSL were combined in vitro. Surprisingly, an increase in the CSE's total antioxidant capacity was also observed. These results suggest a synergy between the two environmental factors in their effect on skin cells, and more precisely a phototoxicity causing a drastic decrease in cell viability.  相似文献   

7.
Statistical and amphiphilic block copolymers bearing cinnamoyl groups were prepared by ring opening metathesis polymerization (ROMP). The UV‐induced [2 + 2] cycloaddition reaction of polymer bound cinnamic acid groups was studied in polymer thin films as well as in block copolymer micelles. In both cases, exposure to UV‐light for 10 min led to a crosslinking conversion of about 60%, as determined by FT‐IR spectroscopy and UV–vis absorption measurements. Time based IR‐spectroscopy revealed a maximum conversion of 78% reached after an irradiation time of about 16 min. For micelles obtained from polymers bearing 5 mol % or more cinnamoyl groups, the crosslinking reaction proceeded smoothly, yielding in crosslinked particles which were stable in a non‐selective solvent (CHCl3). Diameters determined by dynamic light scattering in the selective solvent (MeOH) were similar for both, non‐crosslinked and crosslinked micelles, whereas diameters of crosslinked micelles in the non‐selective solvent (CHCl3) were significantly larger compared to MeOH samples. This strategy of direct self assembly of block‐copolymers in a selective solvent followed by “clean” crosslinking, without the need for additional crosslinking reagents or crosslinking initiators, provides a straight forward approach toward ROMP‐based polymeric nano‐particles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2402–2413, 2008  相似文献   

8.
In this study, we report on the synthesis and characterization of photoreactive polymers bearing N‐acetylcarbazole and N‐formylcarbazole groups, respectively. These polymers were easily accessible by polymer analogous acylation of commercially available poly‐(2‐vinylcarbazole). While poly(1‐(2‐vinyl‐9H‐carbazol‐9‐yl)ethanone) (poly‐ 1 ) undergoes a partial photochemical Fries rearrangement, poly(2‐vinyl‐9H‐carbazole‐9‐carbaldehyde) (poly‐ 2 ) decarbonylates smoothly when exposed to UV irradiation. The difference in reactivity between the two acylated polymers is because of the lower stability of the formyl radical, which is formed in the first stage of this photoreaction. Ellipsometric measurements of thin films showed that the photo‐Fries rearrangement in poly‐ 1 causes a change in refractive index by Δn = +0.01 at 650 nm. UV illumination of poly‐ 2 results in a change of the refractive index by Δn = +0.03 at 650 nm, which can be explained by the high yield of the photodecarbonylation of the N‐formylcarbazole groups. Refractive index patterns can be easily realized using lithographic techniques as demonstrated by optical microscopy using a phase contrast set‐up for visualization. Patterned films of poly‐ 1 and poly‐ 2 with feature sizes of about 5 μm were obtained with a mask aligner. Photoreactive polymers bearing N‐acylcarbazole groups are of potential interest for optical applications such as waveguides, optical switches, and data storage devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Our previous studies of action spectra for UV‐B‐induced anthocyanin accumulation in cultured carrot cells indicated that a reduced form of pterin, possibly tetrahydrobiopterin, contributes to UV‐B photoreception. In this report, we provide additional evidence for the involvement of pterin in UV‐B light sensing. UV‐B‐induced phenylalanine ammonia‐lyase (PAL) activity was considerably suppressed by N‐acetylserotonin (an inhibitor of tetrahydrobiopterin biosynthesis), and this suppression was partially recovered by adding biopterin or tetrahydrobiobiopterin. In addition, protein(s) specifically bound to biopterin were detected by radiolabeling experiments in N‐acetylserotonin‐treated cells. Furthermore, diphenyleneiodonium, a potent inhibitor of electron transfer, completely suppressed UV‐B‐induced PAL activity. These results suggest the occurrence of an unidentified UV‐B photoreceptor (other than UVR8, the tryptophan‐based UV‐B sensor originally identified in Arabidopsis) with reduced pterin in carrot cells. After reexamining published action spectra, we suggest that anthocyanin synthesis is coordinately regulated by these two UV‐B sensors.  相似文献   

10.
UV‐induced formation of pyrimidine dimers in DNA is a major deleterious event in both eukaryotic and prokaryotic cells. Accumulation of cyclobutane pyrimidine dimers and pyrimidine (6‐4) pyrimidone photoproducts can lead to cell death or be at the origin of mutations. In skin, UV induction of DNA damage is a major initiating event in tumorigenesis. To counteract these deleterious effects, all cell types possess DNA repair machinery, such as nucleotide excision repair and, in some cell types, direct reversion. Different analytical approaches were used to assess the efficiency of repair and decipher the enzymatic mechanisms. We presently review the information provided by chromatographic methods, which are complementary to biochemical assays, such as immunological detection and electrophoresis‐based techniques. Chromatographic assays are interesting in their ability to provide quantitative data on a wide range of damage and are also valuable tools for the identification of repair intermediates.  相似文献   

11.
The knowledge of the fundamental processes induced by the direct absorption of UV radiation by DNA allows extrapolating conclusions drawn from in vitro studies to the in‐vivo DNA photoreactivity. In this respect, the characterization of the DNA electronic excited states plays a key role. For a long time, the mechanisms of DNA lesion formation were discussed in terms of generic “singlet” and “triplet” excited state reactivity. However, since the beginning of the 21st century, both experimental and theoretical studies revealed the existence of “collective” excited states, i.e. excited states delocalized over at least two bases. Two limiting cases are distinguished: Frenkel excitons (delocalized ππ* states) and charge‐transfer states in which positive and negative charges are located on different bases. The importance of collective excited states in photon absorption (in particular in the UVA spectral domain), the redistribution of the excitation energy within DNA, and the formation of dimeric pyrimidine photoproducts is discussed. The dependence of the behavior of the collective excited states on conformational motions of the nucleic acids is highlighted.  相似文献   

12.
Direct repair of UV‐induced DNA lesions represents an elegant method for many organisms to deal with these highly mutagenic and cytotoxic compounds. Although the participating proteins are structurally well investigated, the exact repair mechanism of the photolyase enzymes remains a vivid subject of current research. In this review, we summarize and highlight the recent contributions to this exciting field.  相似文献   

13.
DNA damage presents a barrier to DNA‐templated biochemical processes, including gene expression and faithful DNA replication. Compromised DNA repair leads to mutations, enhancing the risk for genetic diseases and cancer development. Conventional experimental approaches to study DNA damage required a researcher to choose between measuring bulk damage over the entire genome, with little or no resolution regarding a specific location, and obtaining data specific to a locus of interest, without a global perspective. Recent advances in high‐throughput genomic tools overcame these limitations and provide high‐resolution measurements simultaneously across the genome. In this review, we discuss the available methods for measuring DNA damage and their repair, focusing on genomewide assays for pyrimidine photodimers, the major types of damage induced by ultraviolet irradiation. These new genomic assays will be a powerful tool in identifying key components of genome stability and carcinogenesis.  相似文献   

14.
A solvent tunable single‐layer polymer film with a multipitched photonic structure as a new photonic band gap material has been developed by imprinting the helical structures on polymer matrices through multiple photocrosslinking in an induced chiral nematic mesophase. Here, the polymer matrices themselves served as a chiral template, which exhibited Bragg reflections in the absence of both a chiral dopant and anisotropic materials because of the memory effects of the polymer network. Tuning of colors was achieved by making a refractive index contrast in the two periodic media of imprinted solid helical structure and the isotropic liquids that fill it. On incorporation of various isotropic liquids in the imprinted matrices, a sharp peak in the reflection spectrum shifted drastically, which indicated that the wavelength shifts strongly depended on the sort of liquids that filled the matrices. The effects of temperature on the imprinted polymer template feeding the various liquids were studied through the reflectance spectra. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Apoptosis involves a highly organized and programmed series of events aimed at maintaining genomic stability by eliminating defective host cells. The purpose of this study was to determine the threshold doses and environmental UV‐A and UV‐B exposure times necessary to produce apoptosis and necrosis in the normal cells of a human fibroblast cell line. Enviromental UV‐A and UV‐B doses were measured over a 6 year period with a four‐channel UV radiometer. The fibroblasts were irradiated once using an Oriel UV Solar Simulator with six doses of environmentally‐based UV. Doses corresponded to 0,11,19,23 and 45 min of average environmental UV‐A and UV‐B radiation at solar noon in Puerto Rico. The Annexin‐V binding method was used to differentiate between normal fibroblasts and apoptotic or necrotic fibroblasts. The threshold dose from apoptosis to necrosis was found between 24–28 kJ/m2, which corresponded to 19 and 23 min of environmental UV‐A and UV‐B exposure. This study provides the first data that specify the environmental threshold doses of UV‐A and UV‐B at which human fibroblasts undergo apoptosis and necrosis. These results may provide valuable dose‐response thresholds for apoptosis and necrosis for future mechanistic studies and baseline data for skin cancer prevention programs.  相似文献   

16.
Kept in the dark : The non‐photocatalytic generation of free radicals from fine and ultrafine TiO2 particles has been studied by means of a spin‐trapping/ESR spectroscopy technique (see figure). The amount and kind of free radicals generated depends on the crystalline structure, but not on the particle dimensions.

  相似文献   


17.
A novel process comprising the UV‐induced photografting of styrene into poly(tetrafluoroethylene) (PTFE) films and subsequent sulfonation has been developed for preparing proton‐conducting membranes. Although under UV irradiation the initial radicals were mainly generated on the surface of the PTFE films by the action of photosensitizers such as xanthone and benzoyl peroxide, the graft chains were readily propagated into the PTFE films. The sulfonation of the grafted films was performed in a chlorosulfonic acid solution. Fourier transform infrared and scanning electron microscopy were used to characterize the grafted and sulfonated membranes. With a view to use in fuel cells, the proton conductivity, water uptake, and mechanical properties of the prepared membranes were measured. Even through the degree of grafting was lower than 10%, the proton conductivity in the thickness direction of the newly prepared membranes could reach a value similar to that of a Nafion membrane. In comparison with γ‐ray radiation grafting, UV‐induced photografting is very simple and safe and is less damaging to the membranes because significant degradation of the PTFE main chains can be avoided. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2624–2637, 2007  相似文献   

18.
Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB‐mediated responses in human epidermal keratinocytes and in a three‐dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm?2)‐mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB‐mediated (1) poly(ADP‐ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB‐induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV‐induced skin damage.  相似文献   

19.
The aim of this study was to analyze whether sera obtained from patients with lupus erythematosus (LE) react with membrane structures found on keratinocytes irradiated with narrow‐band ultraviolet B (NB‐UVB). We applied atomic force microscopy (AFM) to visualize cell surface structures expressing nuclear antigens upon apoptosis following NB‐UVB irradiation. Immortalized human keratinocytes (HaCaT) were cultured under standard conditions, irradiated with 800 mJ cm?2 NB‐UVB light and imaged by AFM mounted on an inverted optical microscope. It was observed that NB‐UVB irradiation provoked significant alterations of the keratinocyte morphology and led to the membrane expression of antigens recognized by anti‐La and anti‐Ro 60 kDa sera but not by antidouble‐strand DNA sera. The presence of La and Ro 60 kDa antigens on keratinocyte surfaces after NB‐UVB irradiation was limited mainly to the small bleb‐like protrusions found on the keratinocytes by AFM. A closer investigation by AFM also revealed that some structures positively stained with anti‐Ro 60 kDa serum were also located submembranously. We hypothesize that the externalization of some nuclear antigens because of NB‐UVB exposure might be responsible for exacerbation of skin symptoms in patients suffering from LE.  相似文献   

20.
The phosphorescence decay of a UV‐A absorber, 4‐tert‐butyl‐4′‐methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV‐B absorbers, 2‐ethylhexyl 4‐methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet–triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy‐donor phosphorescence decay measurements can be applied to the study of the triplet–triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet–triplet annihilation was observed in the BMDBM–OMC and BMDBM–OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号