首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
氯化天然橡胶的等速升温热降解动力学   总被引:7,自引:0,他引:7  
天然胶乳;氯化天然橡胶的等速升温热降解动力学  相似文献   

2.
The influence of ozone on the kinetics and mechanisms of poly(vinyl chloride) degradation has been studied. The rate constants for reaction of ozone with saturated and unsaturated units of macromolecules have been measured. The products of the reaction of ozone with double bonds are inactive and do not influence the subsequent thermal dehydrochlorination of the polymer. The products of reaction of ozone with saturated units greatly increase dehydrochlorination.  相似文献   

3.
The thermal properties of dehydrochlorinated PVC (DHPVC) were evaluated. From thermogravimetric analysis (TGA) and differential thermal analysis (DTA), a larger decrease in thermal stability of dehydrochlorinated PVC than of PVC was observed. Thermal stability of DHPVC increased continuously with an increase in dehydrochlorination temperature and dilution of the reaction solution during dehydrochlorination. However, with an increase in dehydrochlorination time, an increase in thermal stability after an initial drop was obtained. The highly cross-linked product separated from the reaction solution at higher dehydrochlorination temperatures showed a lower thermal stability than that of corresponding soluble DHPVC. The stress-strain behavior of dehydrochlorinated PVC samples was also studied.  相似文献   

4.
The mechanism of dehydrochlorination has been studied by examining the degradation of polychloroprene/poly(methyl methacrylate) blends, using thermal volatilization analysis and infrared spectroscopy; the behaviour has been compared with that previously found for PVC/PMMA blends. Unlike the latter system, the polychloroprene blends did not show any increased production of methyl methacrylate monomer in the early stages of breakdown. The stabilization effect on PMMA due to reaction of ester groups with hydrogen chloride, on the other hand, is much more evident in the case of polychloroprene blends than for PVC, PVC dehydrochlorination is retarded by the presence of PMMA, but evolution of hydrogen chloride from polychloroprene is unaffected to any significant extent. It is concluded that the dehydrochlorination of polychloroprene is not a radical chain process. A unimolecular mechanism is suggested.  相似文献   

5.
Thermal degradation of polychloroprene under nitrogen, especially at the initial stages, has been studied by using 1H-NMR, 13C-NMR and FT–IR spectroscopy. A model polymer of low molecular weight (M n = 6300) was prepared to avoid gelation during degradation. None of isomerized 1,2 unit has been found in the original polymer. Allylic rearrangement of 1,2 unit was the first-stage reaction, which was finished within 30 min at 150°C. The extent of HCl loss was proportional to the decrease of isomerized 1,2 unit. It has been suggested that the next-stage reaction is dehydrochlorination of the isomerized 1,2 unit. The presence of terminal vinyl group and the increased amount of olefinic proton were not found in the degraded polymer. The back-biting mechanism involving a six-membered cyclization process is proposed for the dehydrochlorination. The thermal racemization has been also found to take place in the 3,4 unit.  相似文献   

6.
Graft copolymers prepared by mastication of PVC in the presence of styrene or of a styrene/ methyl methacrylate mixture, have been studied by thermogravimetry, estimation of hydrogen chloride, thermal volatilization analysis, and flash pyrolysis/g.l.c. The degradation behaviour of PVC/ polystyrene mixtures, vinyl chloride/styrene random copolymers, a random copolymer of methyl methacrylate and styrene, and PVC/poly-α-methylstyrene mixtures has also been studied. The graft copolymers resemble the PVC/methacrylate graft copolymers previously studied in showing retardation of the dehydrochlorination reaction, but contrast with them in yielding chain fragments but no monomer during HCl production. Some stabilization of the second component at higher temperatures is also found. PVC/polystyrene mixtures behave in the same way as the corresponding graft copolymers, but vinyl chloride/styrene copolymers show reduced stability towards both dehydrochlorination and monomer production compared with the homopolymers. PVC/poly-α-methylstyrene mixtures yield some monomer concurrently with HCl loss, and display marked retardation of the latter reaction. Stabilization of the second polymer at higher temperatures is again observed. Many of these results add further strong support to the view that chlorine atoms are involved as chain carriers in the thermal dehydrochlorination of PVC.  相似文献   

7.
《European Polymer Journal》1985,21(8):747-751
The chloroallyl group contents of PVC and its low molecular weight fractions, soluble in chloroform or acetone, have been determined on the assumption that the reaction of AgNO3 with labile chlorine atoms occurs only with the allylic chlorines. Their amount is highest in the low molecular weight fractions. The thermal stability of the polymer in inert atmosphere increases if these groups are removed. Neither the labile chlorine content nor the dehydrochlorination rate (in the subsequent degradation) of the initial polymer, or the fractions insoluble in the two solvents, is affected by heat treatment at 180 for 60 min, whereas the amount of labile chlorine in the low molecular weight fractions increases on heat treatment exceeding 30 min. No direct dependence of the dehydrochlorination rate on the amount of labile chlorine in the polymers under study has been established.  相似文献   

8.
The polymeric p-benzoquinone-tin derivatives obtained from the reaction of p-benzoquinone with tin tetrachloride in the absence of solvent have been investigated as thermal stabilizers for rigid PVC at 200°C by measuring the rate of dehydrochlorination. The results reveal the greater stabilizing efficiency of the investigated products in relation to dibutyltin maleate and the basic lead stabilizers commonly used in industry. Evidence has been accumulated that the quinone and metallic elements (Sn? Sn bonds) of the stabilizer participate in the stabilization process by trapping the radical intermediates of degradation and blocking the odd electron sites formed on the polymer chains. Although stabilizers with high quinone content provide greater stabilization in the early stages of degradation, their efficiency sharply decreases in subsequent stages. On the other hand, stabilizers of high tin content effectively prohibit the dehydrochlorination reaction at all stages of degradation. On an equivalent basis of metal content, the results clearly demonstrate the greater stabilizing efficiency of tin atoms when found in direct contact in the stabilizer molecule. The mechanism of stabilization suggested to account for the results obtained may be considered as additional evidence in support of the radical nature of the dehydrochlorination reaction.  相似文献   

9.
The thermal degradation of a highly chlorinated paraffin, (Cl 70% w/w)(CP), used as a fire retardant additive for polymers, has been studied by TG, DTA and TVA. The main volatile degradation product is HCl which is eliminated in two steps. To 60–70% dehydrochlorination an apparent zero order reaction occurs with a detectable rate from 250°C, probably initiated at labile chlorine atoms. The apparent activation energy of the process is 40 kcal/mole. A charred residue containing 35% chlorine is obtained. This residue undergoes nearly complete dehydrochlorination in the range 300–600°C.  相似文献   

10.
The dehydrochlorination of PVC under vacuum (~ 10?4 mm Hg), with continuous removal of volatile products by freezing out, has been studied at 180–250°. The equation has been deduced and solved to describe the thermal degradation of PVC. The rate constants of separate steps of polymer dehydrochlorination and the dependence of concentrations of polyenes on time of degradation are calculated.  相似文献   

11.
A theoretical study based on B3LYP/6-31G calculations has been applied to the mechanisms and regiochemistry of reactions of 5-alkoxyoxazole with thioaldehydes, nitroso compounds, and aldehydes. All three reactions adopt similar mechanisms, which start with Diels-Alder (DA) reactions, followed by either a novel, concerted ring-opening-ring-closing (RORC) step to transfer the DA adduct to 2-alkoxycarbonyl-3-thiazoline and 2-alkoxycarbonyl-3-oxazoline for thioaldehydes and aldehydes, respectively, or stepwise ring-opening and ring-closing steps to generate 1,2,4-oxadiazoline for nitroso compounds. The reactions of 5-alkoxyoxazole with thioaldehydes and nitroso compounds can be conducted under thermal reaction conditions due to the 10 kcal/mol activation barriers for their rate-determining DA reactions. By contrast, the reaction of 5-alkoxyoxazole with aldehydes cannot take place under thermal conditions, since this bimolecular reaction has the rate-determining RORC transition state higher than the reactants by 30.5 kcal/mol.  相似文献   

12.
用AM1方法(采用非限制的Hartree-FockUHF计算)研究乙烯与环己-1,3-二烯的热Diels-Alder反应。结果表明反应是放热的且存在两条竞争的路径;协同反应的活化能以及双自由反应速度控制步骤的活化能分别为112.667kJ/mol和78.406kJ/mol。  相似文献   

13.
The thermal degradation of polypropylene is accelerated when it is heated in mixtures with a fire retardant chlorinated paraffin (Cl 70%) whose dehydrochlorination rate is simultaneously reduced.The mechanism proposed to account for this behaviour involves the attack of the chlorine atoms, which propagate the dehydrochlorination reaction, on the tertiary hydrogen atoms of polypropylene with formation of HCl. The kinetic chain length of the dehydrochlorination is decreased and the rate of evolution of HCl is lowered, while the radicals formed on the polypropylene chain lead to its scission and volatilisation.The effects of these reactions on the fire retardant performance of the mixture are discussed.  相似文献   

14.
The thermal dehydrochlorination CCl2FCH3 → CClFCH2 + HCl has been studied in a static system between 610 and 700 K at pressures ranging from 14 to 120 torr. The experiments were performed in the absence and presence of an added inhibitor (0.5 to 7 torr of C3H6) or catalyst (2 to 8 torr of CCl4). The evolution of the reaction was followed by measuring the pressure rise in the quartz reaction vessel and analyzing the products by gas chromatography. All the experimental results can be explained quantitatively in terms of a reaction model both radical and molecular. The molecular dehydrochlorination has an activation energy of 57.05 kcal/mol and a preexponential factor of 1014.02 s−1. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 191–197, 2001  相似文献   

15.
PVC has been cyclopentadienylated by two conventional basic, LiCp and NaCp, and a new acidic, Me2CpAl, cyclopentadienylating agent. PVCs treated with basic cyclopentadienylating agents undergo severe random dehydrochlorination and exhibit a significant decrease in thermal and thermooxidative stability. In contrast, according to ozonization and degradation experiments, Me2CpAl does not cause dehydrochlorination during cyclopentadienylation. The thermal stability of PVC treated with relatively high concentrations of Me2CpAl and Me3Al at 25°C markedly increases due to substitution of labile chlorines in PVC with methyl groups. Initial thermal dehydrochlorination behavior of virgin PVC and samples treated with Me2CpAl at ?30°C are similar. In contrast, thermooxidative stability decreases on Me2CpAl treatment at ?30°C; this is attributed to ease of oxidation of pendant cyclopentadienyl groups; that is, the formation of peroxy radicals that may initiate dehydrochlorination by attacking unchanged repeat units in PVC. Acceleration of thermal dehydrochlorination disappears and the length of polyene sequences is reduced on Me2CpAl and Me3Al treatment. These observations are attributed to differences in rates of protonation-deprotonation; that is, rates of reinitation of zipping of treated and untreated PVCs during thermal degration. The effect of traces of aluminum residues on degradation of modified PVCs, however, cannot be neglected.  相似文献   

16.
The mechanism of dehydrochlorination of 2,3-dichlorobutane and chlorinated polybutadiene which are model compounds of head-to-head poly(vinyl chloride) has been investigated by pyrolysis, thermal, and ultraviolet-induced decomposition. The activation energy of dehydrochlorination for head-to-head poly(vinyl chloride) in nitrogen was 23 kcal/mole at temperatures of 150–190°C, which is slightly smaller than that (29 kcal/mole) for head-to-tail poly(vinyl chloride). The conjugated double bonds were formed by thermal and radiation decomposition of head-to-head poly(vinyl chloride), similar to head-to-tail poly(vinyl chloride). The probability of polyene formation by radiation-induced dehydrochlorination is larger than that by thermal decomposition and is affected by the conformation and the molecular motion of the main chain. This may be due to the alternative mechanism of dehydrochlorination in the thermal and radiation decomposition. The amount of head-to-head linkage of poly(vinyl chloride) samples prepared with various catalysts is dependent on polymerization temperature rather than the kinds of catalyst. Commercial poly(vinyl chloride) has 6–7 head-to-head linkages per 1000 monomeric units.  相似文献   

17.
Poly(viny1 chloride) (PVC) was dehydrochlorinated thermally in pyridine solution under N2 atmosphere and the effect of variation of reaction time, temperature, and concentration of PVC in pyridine was studied. The extent of dehydrochlorination (or conversion, x%) increases with an increase in reaction time and temperature, and with a decrease in the concentration of PVC. Incomplete precipitation of dehydrochlorinated PVC (DHPVC) occurs by nonsolvent (methanol). During dehydrochlorination there is no HCl evolution as it forms a pyridine hydrochloride complex which is supposed to act as a catalyst for dehydrochlorination. A possible mechanism has been proposed. Chain scission and cross-linking reactions are responsible for the molecular weight changes that take place during the reaction.  相似文献   

18.
The course of the chlorination reaction of cis-1,4-polybutadiene is dependent on the choice of solvent. When methylene chloride is used, a pure addition reaction of chlorine leads to a polymer with the structure of head-to-head, tail-to-tail PVC. The thermal stability of the head-to-head PVC polymer has been studied by thermal volatilization analysis, thermogravimetry, and evolved gas analysis for hydrogen chloride, and the changes in the ultraviolet (UV) spectrum of the polymer during degradation have been investigated. The head-to-head polymer has a lower threshold temperature of degradation than normal PVC, but reaches its maximum rate of degradation at a higher temperature for powder samples of the polymer under programmed heating conditions. Blends of head-to-head PVC with poly(methyl methacrylate) have also been degraded, and the presence of the head-to-head polymers, like that of normal PVC, results in depolymerization of the PMMA as soon as the dehydrochlorination reaction commences. The mechanism of degradation of head-to-head PVC is discussed.  相似文献   

19.
The thermal degradation of vinylidene chloride/methyl acrylate/phenylacetylene (VDC/MA/PA) terpolymers containing a constant 9 wt % methyl acrylate and small but varying amounts of phenylacetylene has been examined in the solid phase and in bibenzyl solution. Thermally promoted degradative dehydrochlorination, largely uncomplicated by methyl chloride formation, readily occurs at temperatures approaching 200°C. Incorporation of phenylacetylene into the polymer structure greatly facilitates degradative dehydrochlorination. Indeed, the presence of phenylacetylene induces the formation of polyene segments during the polymerization so that all the terpolymers, even at very low phenylacetylene loading, are tan in color. The decreased stability of polymers containing internal unsaturation arises from an increased rate of initiation for the degradation reaction. The propagation rate is largely unaffected by the level of unsaturation initially present in the polymer. Thus random double bonds have been identified as the principal defect sites responsible for the facile degradation of Saran copolymers. Species which promote the degradation of Saran polymers probably do so by facilitating the introduction of double bonds into the structure. The ratio of hydrogen chloride to stilbene formed for degradation of the terpolymers in bibenzyl solution is ca. 35:1. This is strongly reminiscent of PVDC degradation and suggests that for degradation of either the homopolymer or Saran copolymers the chain-carrying allylic radical pair does not dissociate to any appreciable extent as dehydrochlorination occurs.  相似文献   

20.
This paper describes an extensive kinetic study of thermal dehydrochlorination for 4-chloro-2-hexene (model of an allylic unstable structure in polyvinylchloride) in solution in dichloroethane. di-ethyl-2-hexyl phthalate and other solvents. The reaction, which is reversible, has an ionic mechanism. It is catalysed by a charge transfer complex between hexadiene and hydrochloric acid. It is inhibited by complexing agents for hydrochloric acid, such as tetrahydrofuran. The addition of hydrochloric acid to conjugated dienes has been shown to occur also in the case of β-carotene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号