首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An n-tournament is a complete labelled digraph on n vertices without loops or multiple arcs. A tournament's score sequence is the sequence of the out-degrees of its vertices arranged in nondecreasing order. The number Sn of distinct score sequences arising from all possible n-tournaments, as well as certain generalizations are investigated. A lower bound of the form
Sn > C14nn52
(C1 a constant) and an upper bound of the form Sn < C24nn2 are proved. A q-extension of the Catalan numbers
c1(q)=1 and cn(q)=i?1n?1ci(q)cn?1(q)qi(n?i?1)
is defined. It is conjectured that all coefficients in the polynomial Cn(q) are at most O(4nn3). It is shown that if this conjecture is true, then
Sn<C34nn52
  相似文献   

2.
For a given pair (A,b)∈Rn×n×Rn×1 such that A is cyclic and b is a cyclic generator (with respect to A) of Rn×1, it is shown that for every nonnegative integer m we can find a nonnegative integer t and a sequence {fj}tj=0,fjR1×n,so that a the zeros of the rational function det P(z), where P(z) = zI ? A ? ∑tj=0z-(m+j)b?f, lie in the open unit disc in the complex plane. The result is directly applicable to a stabilizability problem for linear systems with a time delay in control action.  相似文献   

3.
It is proved that Wigner's semicircle law for the distribution of eigenvalues of random matrices, which is important in the statistical theory of energy levels of heavy nuclei, possesses the following completely deterministic version. Let An=(aij), 1?i, ?n, be the nth section of an infinite Hermitian matrix, {λ(n)}1?k?n its eigenvalues, and {uk(n)}1?k?n the corresponding (orthonormalized column) eigenvectors. Let v1n=(an1,an2,?,an,n?1), put
Xn(t)=[n(n-1)]-12k=1[(n-1)t]|vn1uf(n-1)|2,0?t?1
(bookeeping function for the length of the projections of the new row v1n of An onto the eigenvectors of the preceding matrix An?1), and let finally
Fn(x)=n-1(number of λk(n)?xn,1?k?n)
(empirical distribution function of the eigenvalues of Ann. Suppose (i) limnannn=0, (ii) limnXn(t)=Ct(0<C<∞,0?t?1). Then
Fn?W(·,C)(n→∞)
,where W is absolutely continuous with (semicircle) density
w(x,C)=(2Cπ)-1(4C-x212for|x|?2C0for|x|?2C
  相似文献   

4.
This paper treats the class of sequences {an} that satisfy the recurrence relation
a2n+1=∑k=0n(?1)k(nkakdn?k
between the odd and even terms of {an} that involves the coefficients of tan(t), namely
a2n+1=∑k=0n(?1)k(2n+12k+1)Tk(d/2)2k+1a2n?2k
A combinatorial setting is then provided to elucidate the appearance of the tangent coefficients in this equation.  相似文献   

5.
A formula for the number am(2n) of self-complementary m-placed relations is given. Then we obtain from this formula asymptotic results, e.g.am(2n) ~ (2(2n) m2?n)/n  相似文献   

6.
A variety of continuous parameter Markov chains arising in applied probability (e.g. epidemic and chemical reaction models) can be obtained as solutions of equations of the form
XN(t)=x0+∑1NlY1N ∫t0 f1(XN(s))ds
where l∈Zt, the Y1 are independent Poisson processes, and N is a parameter with a natural interpretation (e.g. total population size or volume of a reacting solution).The corresponding deterministic model, satisfies
X(t)=x0+ ∫t0 ∑ lf1(X(s))ds
Under very general conditions limN→∞XN(t)=X(t) a.s. The process XN(t) is compared to the diffusion processes given by
ZN(t)=x0+∑1NlB1N∫t0 ft(ZN(s))ds
and
V(t)=∑ l∫t0f1(X(s))dW?1+∫t0 ?F(X(s))·V(s)ds.
Under conditions satisfied by most of the applied probability models, it is shown that XN,ZN and V can be constructed on the same sample space in such a way that
XN(t)=ZN(t)+OlogNN
and
N(XN(t)?X(t))=V(t)+O log NN
  相似文献   

7.
Let
F(x) = k=onnkAkxk
An ≠ 0,
and
G(x) = k=onnkBkxk
Bn ≠ 0,
be polynomials with real zeros satisfying An?1 = Bn?1 = 0, and let
H(x) = k=on-2nkAkBkxk.
Using the recently proved validity of the van der Waerden conjecture on permanents, some results on the real zeros of H(x) are obtained. These results are related to classical results on composite polynomials.  相似文献   

8.
The absolute Kähler module Ωwn(k) of the truncated generalized Witt vectors of a field k of positive characteristic is zero if and only if k is perfect. This recovers known information on K2(k[t](tn)) with which the structure of K2(k((t))) can be studied.  相似文献   

9.
Let ? be defined on Tr and have an absolutely convergent Fourier series
?(〈eitj〉) = k?keik·t
. Set ∥?∥ = ∑ ¦?k¦. In this paper the problem of determining the limit of ∥?n, as n → ∞, is studied.  相似文献   

10.
This paper considers canonical forms for the similarity action of Gl(n) on n,m={(A,B)∈Cn·n×Cn·m}:
Gl(n×∑n,m→∑n,m
,
(H,(A,B))?(HAH-1,HB)
Those canonical forms are obtained as an application of a more general method to select canonical elements Mc in the orbits OM of a matrix group G acting on a set of matrices M?Cl·p. We define a total order (?) on Cl·p, different from the lexicographic order l? [0l?x ? x <0, but 0?x≠0 for x∈R] and consider normalized OM-elements with a minimal number of parameters:
min{M?OM:M? normalized}
It is shown that the row and column echelon forms, the Jordan canonical form, and “nice” control canonical forms for reachable (A,B)-pairs have a homogeneous interpretation as such (?)-minimal orbit elements. Moreover new canonical forms for the general action (?) are determined via this method.  相似文献   

11.
New and more elementary proofs are given of two results due to W. Littman: (1) Let n ? 2, p ? 2n(n ? 1). The estimate ∫∫ (¦▽u¦p + ¦ut¦p) dx dt ? C ∫∫ ¦□u¦p dx dt cannot hold for all u?C0(Q), Q a cube in Rn × R, some constant C. (2) Let n ? 2, p ≠ 2. The estimate ∫ (¦▽(t)¦p + ¦ut(t)¦p) dx ? C(t) ∫ (¦▽u(0)¦p + ¦ut(0)¦p) dx cannot hold for all C solutions of the wave equation □u = 0 in Rn x R; all t ?R; some function C: RR.  相似文献   

12.
According to a result of A. Ghizzetti, for any solution y(t) of the differential equation where y(n)(t)+ i=0n?1 gi(t) yi(t)=0 (t ? 1), 1 ¦gi(x)¦xn?I?1 dx < ∞ (0 ?i ? n ?1, either y(t) = 0 for t ? 1 or there is an integer r with 0 ? r ? n ? 1 such that limt → ∞ y(t)tr exists and ≠0. Related results are obtained for difference and differential inequalities. A special case of the former has interesting applications in the study of orthogonal polynomials.  相似文献   

13.
Real constant coefficient nth order elliptic operators, Q, which generate strongly continuous semigroups on L2(Rk) are analyzed in terms of the elementary generator,
A = (?n)(n2 ? 1)(n!)?1kj = 1?n?xjn
, for n even. Integral operators are defined using the fundamental solutions pn(x, t) to ut = Au and using real polynomials ql,…, qk on Rm by the formula, for q = (ql,…, qk),
(F(t)?)(x) = ∫
Rm
?(x + q(z)) Pn(z, t)dz
. It is determined when, strongly on L2(Rk),
etQ = limj → ∞ Ftjj
. If n = 2 or k = 1, this can always be done. Otherwise the symbol of Q must have a special form.  相似文献   

14.
15.
Let Ω be a simply connected domain in the complex plane, and A(Ωn), the space of functions which are defined and analytic on Ωn, if K is the operator on elements u(t, a1, …, an) of A(Ωn + 1) defined in terms of the kernels ki(t, s, a1, …, an) in A(Ωn + 2) by Ku = ∑i = 1naitk i(t, s, a1, …, an) u(s, a1, …, an) ds ? A(Ωn + 1) and I is the identity operator on A(Ωn + 1), then the operator I ? K may be factored in the form (I ? K)(M ? W) = (I ? ΠK)(M ? ΠW). Here, W is an operator on A(Ωn + 1) defined in terms of a kernel w(t, s, a1, …, an) in A(Ωn + 2) by Wu = ∝antw(t, s, a1, …, an) u(s, a1, …, an) ds. ΠW is the operator; ΠWu = ∝an ? 1w(t, s, a1, …, an) u(s, a1, …, an) ds. ΠK is the operator; ΠKu = ∑i = 1n ? 1aitki(t, s, a1, …, an) ds + ∝an ? 1tkn(t, s, a1, …, an) u(s, a1, …, an) ds. The operator M is of the form m(t, a1, …, an)I, where m ? A(Ωn + 1) and maps elements of A(Ωn + 1) into itself by multiplication. The function m is uniquely derived from K in the following manner. The operator K defines an operator K1 on functions u in A(Ωn + 2), by K1u = ∑i = 1n ? 1ait ki(t, s, a1, …, an) u(s, a, …, an + 1) ds + ∝an + 1t kn(t, s, a1, …, an) u((s, a1, …, an + 1) ds. A determinant δ(I ? K1) of the operator I ? K1 is defined as an element m1(t, a1, …, an + 1) of A(Ωn + 2). This is mapped into A(Ωn + 1) by setting an + 1 = t to give m(t, a1, …, an). The operator I ? ΠK may be factored in similar fashion, giving rise to a chain factorization of I ? K. In some cases all the matrix kernels ki defining K are separable in the sense that ki(t, s, a1, …, an) = Pi(t, a1, …, an) Qi(s, a1, …, an), where Pi is a 1 × pi matrix and Qi is a pi × 1 matrix, each with elements in A(Ωn + 1), explicit formulas are given for the kernels of the factors W. The various results are stated in a form allowing immediate extension to the vector-matrix case.  相似文献   

16.
The usual Sobolev inequality in Rn, n ? 3, asserts that ∥▽?∥22 ? Sn ∥?∥212, with Sn being the sharp constant. This paper is concerned, instead, with functions restricted to bounded domains Ω ? Rn. Two kinds of inequalities are established: (i) If ? = 0 on ?Ω, then ∥▽?∥22 ? Sn ∥?||212 + C(Ω) ∥?∥p,w2 with p = 212 and ∥▽?∥22 ? Sn ∥?∥212 + D(Ω) ∥▽?∥q,w2 with q = n(n ? 1). (ii) If ? ≠ 0 on ?Ω, then ∥▽?∥2 + C(Ω) ∥?∥q,?Ω ? Sn12 ∥?∥21 with q = 2(n ? 1)(n ? 2). Some further results and open problems in this area are also presented.  相似文献   

17.
Let {X(t) : t ∈ R+N} denote the N-parameter Wiener process on R+N = [0, ∞)n. For multiple sequences of certain independent random variables the authors find lower bounds for the distributions of maximum of partial sums of these random variables, and as a consequence a useful upper bound for the yet unknown function P{supt∈DnX(t) ≥ c}, c ≥ 0, is obtained where DN = Πk = 1N [0, Tk]. The latter bound is used to give three different varieties of N-parameter generalization of the classical law of iterated logarithm for the standard Brownian motion process.  相似文献   

18.
Let A be an n×n complex matrix. For a suitable subspace M of Cn the Schur compression A M and the (generalized) Schur complement A/M are defined. If A is written in the form
A= BCST
according to the decomposition Cn=MM and if B is invertible, then
AM=BCSSB?1C
and
A/M=000T?SB?1C·
The commutativity rule for Schur complements is proved:
(A/M)/N=(A)/N)/M·
This unifies Crabtree and Haynsworth's quotient formula for (classical) Schur complements and Anderson's commutativity rule for shorted operators. Further, the absorption rule for Schur compressions is proved:
(A/M)N=(AN)M=AM whenever M?N
.  相似文献   

19.
On Rn, n?1 and n≠2, we prove the existence of a sharp constant for Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. For n>2s and q=2nn?2s any function f∈Hs(Rn) satisfies
6f62q?Sn,s(?Δ)s/2f22,
where the operator (?Δ)s in Fourier spaces is defined by (?Δ)sf(k):=(2π|k|)2sf(k). To cite this article: A. Cotsiolis, N.C. Tavoularis, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 801–804.  相似文献   

20.
If f is a positive function on (0, ∞) which is monotone of order n for every n in the sense of Löwner and if Φ1 and Φ2 are concave maps among positive definite matrices, then the following map involving tensor products:
(A,B)?f[Φ1(A)?12(B)]·(Φ1(A)?I)
is proved to be concave. If Φ1 is affine, it is proved without use of positivity that the map
(A,B)?f[Φ1(A)?Φ2(B)?1]·(Φ1(A)?I)
is convex. These yield the concavity of the map
(A,B)?A1?p?Bp
(0<p?1) (Lieb's theorem) and the convexity of the map
(A,B)?A1+p?B?p
(0<p?1), as well as the convexity of the map
(A,B)?(A·log[A])?I?A?log[B]
.These concavity and convexity theorems are then applied to obtain unusual estimates, from above and below, for Hadamard products of positive definite matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号