共查询到20条相似文献,搜索用时 0 毫秒
1.
The ionization of the four DNA bases is investigated by means of ab initio calculations. Accurate values of the gas-phase vertical and adiabatic ionization potentials (IP) are obtained at the MP2/6-31G(2d(0.8,alpha(d)),p) level of theory. The need of introducing extra polarization to the standard 6-31G(d,p) basis set is demonstrated by test calculations and an optimal value of alpha(d) = 0.1 is obtained. Ionization to electronically excited radical cations is also considered. The low-lying excited states of the cations are characterized for the first time. The topology of the corresponding potential energy surfaces is qualitatively described in terms of the stationary points (minima and saddle points) located on these surfaces. A conical intersection is characterized for the first time on the ground-state potential energy surface of all cations. It arises from the crossing of the adiabatic surfaces of the ground and first excited state at planar geometries. A nonplanar minimum is observed for the cytosine cation only. The geometry and electronic changes occurring along these surfaces are analyzed, leading to a comparison between the different nucleobase cations. The study of larger ionized systems related to DNA is rendered possible thanks to the optimized medium size basis set proposed in this work, as exemplified by the calculation of the IP of a stacked dimer of guanines. 相似文献
2.
To resolve discrepancies concerning the magnitude of the electron affinities of perfluorocyclopropane and perfluorocyclobutane, quantum chemical calculations have been carried out with the MP2 and CCSD(T) methods in conjunction with augmented correlation consistent basis sets (aug-cc-pVX Z, X = D, T, Q). Though no experimental values have been found for perfluorocyclopropane, we estimate its electron affinity to be 0.17 eV (0.00 eV without zero-point vibrational energy corrections). In addition, determination of the electron affinity of perfluorocyclobutane (0.61 and 0.44 eV with and without zero-point vibrational energy corrections, respectively) is in good agreement with experimental values reported by Miller and co-workers (0.63 +/- 0.05 eV). This study also demonstrates that the widely prescribed B3LYP/DZP++ model chemistry for computing electron affinities does not correctly describe these systems. 相似文献
3.
4.
Melvyn H. Wood 《Theoretical chemistry accounts》1975,36(4):345-349
The results of anab initio SCF calculation for the ground state and CI calculations for the excited states of p-benzoquinone are presented and discussed. A minimum basis set of Slater type orbitals was employed and the CI calculations were performed by considering single excitations from valence to virtual SCF molecular orbitals. The convergence of the calculated excitation energies is studied as a function of the number of orbitals used in the CI calculations. These calculations explain quite well the experimental results. 相似文献
5.
K. Hegemann V. Staemmler R. Fink 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1993,27(3):211-217
Quantum chemical ab initio calculations have been performed for the ground state and for several excited states of the F3+ ion (F IV). Three levels of accuracy have been used: Frozen-core SCF calculations (FRC-SCF) to determine orbital energies ε nl and quantum defects δ l for excited Rydberg orbitalsnl; frozen-core SCF followed by CI calculations (FRC-CI) which account for multiplet splittings and configuration mixings, and multi-configuration coupled-electron-pair approximation (MC-CEPA) calculations which include dynamic correlation effects. The accuracy of the calculated excitation energies is in the order of 5000 cm?1 at the FRC-CI level and in the order of 500 cm?1 at the MC-CEPA level. This latter error amounts to about 0.1% for excitation energies in the range of 400000 to 600000 cm?1. The MC-CEPA calculations have been performed for 17 experimentally known states and for 14 experimentally unknown states, in particular for the configurations 2s2p 2 (2 D)3s, 2s 2p 2(2 S)3s, 2s 2 2p 4p, and 2s 2 2p 5p. 相似文献
6.
R. G. Selsby C. Machin M. L. Hernandez 《International journal of quantum chemistry》1977,11(1):149-161
A method for calculating the vertical ionization potentials and electron affinities according to their fundamental definition as differences between energies of the singlet ground and doublet ionized states is developed for cyclic hydrocarbons. The method adopts a new approach based on the central idea of a recent ab initio IP and EA calculation in which orbital exponents are optimized for both ground and ionized states. Hence, all the semi-empirical parameters of the MO theory are written as functions of the effective nuclear charge which, in turn, is made self-consistent with the molecular electronic charge distribution of the species. Although the MO theory is developed in the π electron approximation, the changes in the σ electron density, resulting from the loss or gain of a π electron, are explicitly considered in the calculation. The theory is compared to the earlier work of Hoyland and Goodman and tested against the first five polyacenes and on the condensed ring aromatics phenanthrene, pyrene, and perylene. Except for perylene, the results are in close agreement with the latest photoelectron spectroscopic measurements. 相似文献
7.
Pulsed-field ionization electron spectroscopy and ab initio calculations of copper-diazine complexes
Copper complexes of pyrazine (1,4-C4H4N2), pyrimidine (1,3-C4H4N2), and pyridazine (1,2-C4H4N2) are produced in laser-vaporization supersonic molecular beams and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy and second-order Moller-Plesset perturbation theory. Both sigma and pi complexes are considered by these ab initio calculations; only sigma structures are identified in these experiments. Adiabatic ionization energies and metal-ligand vibrational frequencies of the sigma complexes are measured from the ZEKE spectra. Metal-ligand bond dissociation energies of these complexes are obtained from a thermochemical cycle. The ionization energies follow the trend of Cu pyridazine (43,054 cm(-1)) < Cu pyrimidine (45,332 cm(-1)) < Cu pyrazine (46,038 cm(-1)); the bond energies are in the order of Cu pyridazine (56.2 kJ mol(-1)) > Cu pyrazine (48.5 kJ mol(-1)) approximately Cu pyrimidine (46.4 kJ mol(-1)). The stronger binding of pyridazine is due to its larger electric dipole moment and possibly bidentate binding. 相似文献
8.
An analysis of the equation-of-motion (EOM) method for computing molecular electron affinities and ionization potentials is presented. The method is compared with the Dyson equation approach of Green function theory. Particular emphasis is devoted to clarifying the similarities between these two theories when carried out to second and to third order. The Epstein—Nesbet hamiltonian and the notion of diagonal scattering renormalization have been used to systematize this comparison. 相似文献
9.
Symmetrically substituted diacetylene compounds, which shows large two-photon absorption (TPA) cross sections, have been theoretically investigated by the ab initio molecular-orbital method employing several theoretical models including the configuration interaction with single excitation (CIS), random phase approximation (RPA), and time-dependent density-functional theory (TDDFT) methods. The calculated excited energies are overestimated by CIS or RPA, whereas underestimated by TDDFT with the B3LYP parametrization for both one-photon absorption (OPA) and TPA allowed states. The lowest OPA state is well described by the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) transition. On the other hand, lower TPA allowed states can be represented as the superposition of the HOMO-LUMO+1 and HOMO-1-LUMO transitions, giving rise to two TPA allowed states. The absorption intensity for the lower TPA state of the diacetylenes molecules is discussed in terms of the alternancy symmetry and its breaking. The symmetry property is differently manifested for neutral and dicationic diacetylenes. Introduction of charges breaks the alternancy symmetry, which gives rise to an increase in the TPA cross sections at the lower frequency. The upper TPA state is calculated to show huge TPA cross sections, which reproduces the enhancement of the TPA cross section experimentally observed for one of the diacetylenes at the higher-frequency region. The enhancement is discussed employing an index defined as the ratio of the transition polarizability and its static limit, which represents the degree of influence of one-photon resonance on the TPA intensity. The huge TPA cross sections are found to be due to a near-resonance effect. The present theoretical calculation approves the previously proposed assumption based on the four-state (dual three-state) model, which consists of the ground, one OPA allowed, and two TPA allowed states. 相似文献
10.
Sixteen low-lying electronic states of NaLi are investigated by SCF/valence Cl calculations including core polarization effects by means of an effective potential. Spectroscopic constants are obtained with estimated uncertainties of ΔRe ? 0.01 Å, Δωe ? 0.6 cm?1 and ΔDe ? 80 cm?1. From a comparison of experimental and theoretical G(υ) values, we suggest a ground-state dissociation energy of 7093 ± 5 cm?1. Using our rovibrational energies and recently measured excitation lines, we are able to improve the Te values and dissociation energies of five excited states to an accuracv of ±8 cm?1. 相似文献
11.
Toshikatsu Koga Hidenori Aoki J. M. Garcia de la Vega Hiroshi Tatewaki 《Theoretical chemistry accounts》1997,96(4):248-255
Relativistic corrections to ionization potentials (IPs) and electron affinities (EAs) of atoms with an atomic number Z≤54 are examined based on the first-order perturbation theory with an approximate Schr?dinger form of the Dirac-Coulomb-Breit
Hamiltonian. Using a Hartree-Fock (HF) wave function from the numerical HF method as the unperturbed function, both the LS-non-splitting and fine-structure corrections are evaluated together with the normal and specific mass corrections. The LS-non-splitting corrections are found to be important for IPs and EAs of transition metal atoms. The fine-structure corrections
are generally larger in magnitude than the LS-non-splitting corrections for the atoms of groups 13–18 with Z≥31, and can never be neglected. Comparison of the IPs and EAs presented here and experimental IPs and EAs gives an estimation
of the electron correlation correction for these properties. For some light atoms, the estimated values agree with the results
directly obtained from correlated calculations.
Received: 28 January 1997 / Accepted: 4 March 1997 相似文献
12.
Ab initio calculations on the ground and valence excited states of the GaF molecule have been performed by using the internally contracted multireference electronic correlation methods (MR-CISD, MR-CISD + Q, and MR-AQCC) with entirely uncontracted all-electronic basis sets and Douglas-Kroll scalar relativistic correction. The potential energy curves of all valence states and the spectroscopic constants of bound states are fitted. It is the first time that the 12 valence Lambda-S states of GaF molecule and all of the 23 Omega states generated from the former are studied in a theoretical way. Calculation results well reproduce most of the experimental data. The effects of the size-extensivity correction and the avoided crossing rule between Omega states of the same symmetry are analyzed. The transition properties of the A 3Pi0+, B 3Pi1, C 1Pi1, and 3Sigma1+ states are predicted, including the transition dipole moments, the Franck-Condon factors and the radiative lifetimes. The radiative lifetime of the C 1Pi1 state of GaF molecule is of the order of nanosecond, implying that it is a rather short-live state. The lifetimes of the B 3Pi1 and 3Sigma1+ states are of the order of microsecond, while the lifetime of the A 3Pi0+ state are the order of millisecond. 相似文献
13.
Tae -Kyu Ha 《Theoretical chemistry accounts》1984,66(2):111-120
Configuration interaction (CI) studies of the ground, electronically excited singlet and triplet states and of the ionized states (cations) are reported for p- quinodimethane (p-xylylene). The calculated ionization potentials are compared with the experimental photoelectron spectrum for the low-energy ionization region. The two high-energy low-intensity flanks of the second and third band observed in the photoelectron spectrum are assigned to be due to the two non-Koopmans' cation states, ascribing to shake-up ionizations.The calculated singlet-singlet and singlet-triplet excitation energies are compared with previous semiempirical MO results and experimental data. 相似文献
14.
15.
Two lowest-lying excited singlets with B(u) symmetry of all-trans-oligoenes, the well-known ionic 1(1)B(u)(+) state as well as the "hidden" ionic-covalent-mixed 1(1)B(u)(-) state, are calculated within both the Pariser-Parr-Pople (PPP) model at full configuration interaction (FCI) level and ab initio methods. The vertical excitation energies as well as wavefunctions from PPP-FCI calculations are found to be in good agreement with those from high-level multi-reference methods, such as multi-reference complete active space self-consistent field (CASSCF) with second order perturbative corrections (CASPT2), multi-reference M?ller-Plesset perturbation theory (MRMP), and complete active space valence bond theory (CASVB). The oscillator strengths from PPP calculation are in good agreement with spectroscopy experiments. The relatively small oscillator strength of 1(1)B(u)(-) is due to the approximate electron-hole symmetry of this state. In addition, the bond lengths in both states are found to show remarkable relativity with the bond orders calculated with ground state geometries, which suggests a possible strategy for initial guess in geometry optimization of excited states. 相似文献
16.
V. Galasso 《Journal of Molecular Structure》1982,86(3):231-237
The first electron affinities, valence ionization potentials and photoionization cross-sections of furan, thiophene, selenophene and tellurophene have been studied by application of one-particle Green's function technique and plane-wave theory, respectively, within the framework of the CNDO approximation. The results are compared with the available experimental values and some sophisticated ab initio predictions. 相似文献
17.
The electric dipole moment in the ground state (vp = 0) and the first five excited states (vp = 1 … 5) of the ring puckering vibration of thietane have been determined from Stark shifts of rotational transitions. The results are: 0|μa|0 = 1.87583(16) D, 1|μa|1 = 1.87341(18) D, 2|μa|2 = 1.89759(28) D, 3|μa|3 = 1.88688(29) D, 4|μa|4 = 1.90036(18) D, 5|μa|5 = 1.88596(59) D. The dependence of these values on vp shows the zig-zagging behaviour typical of modes with double minimum potentials. A combined analysis of the ground and first excited states yielded also a precise value for the transition moment, 0|μc|1 = 0.24023(49) D.
A potential and electric dipole moment function has been derived from ab initio calculations, using MP2 and the 6–31G** basis set. Expectation values of the dipole and transition moments were determined from these data. Absolute values are about 5% in error, but the variation with vibrational state is reproduced excellently by the theoretical values. 相似文献
18.
Recently, Lagos et al. [Nat. Nanotechnol. 4, 149 (2009)] reported the discovery of the smallest possible silver square cross-section nanotube. A natural question is whether similar carbon nanotubes can exist. In this work we report ab initio results for the structural, stability, and electronic properties for such hypothetical structures. Our results show that stable (or at least metastable) structures are possible with metallic properties. They also show that these structures can be obtained by a direct interconversion from SWNT(2,2). Large finite cubanelike oligomers, topologically related to these new tubes, were also investigated. 相似文献
19.
Several excited singlet electronic states of purine nucleobases and related derivatives have been calculated using high-level multireference perturbation theory methods. Purine derivatives with one or two amino or carbonyl groups substituted at positions C(2) and/or C(6) of the purine ring have been included in the study. The effect of the substituents on excited-state energies and wave functions is examined. Some trends have been observed, such as the fact that substitution at the C(2) position decreases the energy of the first pi --> pi* state considerably. Although basic qualitative features of the effects can be explained with the simple frontier molecular orbital theory, ab initio calculations are required to describe the effects quantitatively. 相似文献
20.
Melvyn H. Wood 《Theoretical chemistry accounts》1975,36(4):309-315
The results of ab-initio self-consistent field calculations for the ground state and configuration interaction calculations for the excited states of the permanganate ion are presented and discussed. The calculations were performed using two large basis sets of contracted gaussian functions, and singly excited configurations were used in the calculations of the excited states. Fair agreement is obtained between these results and the experimental absorption spectra. 相似文献