首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-speed counter-current chromatography (HSCCC) was applied to the isolation and purification of lutein from microalgae. Analytical HSCCC was used for the preliminary selection of a suitable solvent system composed of n-hexane-ethanol-water (4:3:1, v/v). Using the above solvent system, preparative HSCCC was successfully performed yielding lutein at 98% purity from 200 mg of the crude extract in a one-step separation.  相似文献   

2.
High-speed counter-current chromatography was applied to the isolation and purification of astaxanthin from microalgae. The crude astaxanthin was obtained by extraction with organic solvents after the astaxanthin esters were saponified. Preparative high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-ethyl acetate-ethanol-water (5:5:6.5:3, v/v) was successfully performed yielding astaxanthin at 97% purity from 250 mg of the crude extract in a one-step separation.  相似文献   

3.
Certain microalgae are considered to be a potential source of canthaxanthin, which possesses strong antioxidant and anticancer activities. A high-speed counter-current chromatography (HSCCC) method was developed for the separation and purification of canthaxanthin from the microalga Chlorella zofingiensis. The crude canthaxanthin was obtained by extraction with organic solvents after the microalgal sample had been saponified. Preparative HSCCC, with a two-phase solvent system composed of n-hexane-ethanol-water (10:9:1 v/v), was successfully performed yielding canthaxanthin at 98.7% purity from 150 mg of the crude extract (2.1% canthaxanthin) in a one-step separation. The recovery of canthaxanthin was 92.3%. This was the first report that canthaxanthin was successfully separated and purified from microalgae.  相似文献   

4.
Liu Y  Chen T  Wang P  You J  Liu Y  Li Y 《色谱》2012,30(5):543-546
椭圆叶花锚的主要活性成分为口山酮类化合物,这类化合物具有利胆、抗炎、抗菌及抗病毒活性。应用高速逆流色谱法建立了2种高纯度口山酮苷元的分离制备方法。对椭圆叶花锚氯仿萃取部位运用高速逆流色谱分离纯化,以正己烷-乙酸乙酯-甲醇-水(5:5:7:5, v/v/v/v)为两相溶剂系统,上相为固定相,下相为流动相。在主机转速800 r/min,流动相流速1.5 mL/min,检测波长254 nm条件下进行分离制备。所得产物经高效液相色谱分析检测,其化学结构由核磁共振氢谱(1H NMR)和核磁共振碳谱(13C NMR)鉴定。在此条件下,从100 mg粗样品中一步分离得到18 mg 1-羟基-2,3,5-三甲氧基口山酮,14 mg 1-羟基-2,3,4,5-四甲氧基口山酮。经高效液相色谱分析,其纯度均达98%以上。该方法简便、快速,所得产物纯度高,适合于椭圆叶花锚口山酮苷元的制备分离。  相似文献   

5.
Platycosides (PSs), the saponins found in the root of Platycodon grandiflorum (Jacq.) A. DC. (Platycodi Radix), are typically composed of oleanene backbones with two side chains; one is a 3-O-glucose linked by a glycosidic bond, and the other is a 28-O-arabinose-rhamnose-xylose-apiose linked by an ester bond. Minor saponins, acetylated isomers of the major saponin on either the 2' or 3' position of rhamnose, were isolated from Platycodi Radix using a multi-step process including high-speed counter-current chromatography (HSCCC) and preparative reversed-phase high-performance liquid chromatography (RP-HPLC). After the separation of the major components, the enriched minor saponin fraction was used for this study. A two-phase solvent system consisting of chloroform-methanol-isopropanol-water (3:2:2:3, v/v) was used for HSCCC. HSCCC separation of the enriched minor saponin fraction yielded 2'-O-acetylplatycodin D, 3'-O-acetylpolygalacin D, 2'-O-acetylpolygalacin and a mixture of 3'-O-acetylplatycodin D and polygalacin D. The mixture fraction from HSCCC separation was further purified by preparative RP-HPLC, giving 3'-O-acetylplatycodin D and polygalacin D at a purity of over 98.9%. The developed method provides the preparative and rapid separation of minor saponins in the crude extract of Platycodi Radix. To the best of our knowledge, this is the first on the separation of acetylated PSs by HSCCC.  相似文献   

6.
Luo Y  Xu Y  Chen L  Luo H  Peng C  Fu J  Chen H  Peng A  Ye H  Xie D  Fu A  Shi J  Yang S  Wei Y 《Journal of chromatography. A》2008,1178(1-2):160-165
In our program to synthesize a series of novel derivatives as potential analogs of honokiol for anti-tumor treatment, we have found that at least three of the derivatives of honokiol showed more potency to inhibit the proliferation of K562 leukemia cells and SPC-A1 adenocarcinoma cells. As a critical step to our further series synthesis of derivatives of honokiol, three derivatives of honokiol composed of two isomers and one compound with two formyl groups, which were hardly separated by common purification methods, needed to be rapidly separated and purified. The present work describes analytical and preparative high-speed counter-current chromatography (HSCCC) for the isolation and purification of these three C-formylation derivatives of honokiol, named 3'-formylhonokiol, 5-formylhonokiol and 3',5-diformylhonokiol, respectively. The solvent system for HSCCC separation was composed of hexane-ethyl acetate-methanol-water with the ratio of 1:0.4:1:0.4 (v/v). The one-step purification produced 157.8 mg, 121.6 mg and 21.2 mg of 3'-formylhonokiol, 5-formylhonokiol, 3',5-diformylhonokiol from crude sample of 400mg with purities of 98.6%, 99.2% and 99.6%, respectively, in an elution time of 2.5 h. The purities and structural identification were determined by HPLC, (1)H NMR, (13)C NMR and mass spectroscopy. Their anti-proliferation effects on K562, A549 and SPC-A1 cell lines were evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay.  相似文献   

7.
High-speed counter-current chromatography (HSCCC) was repeatedly used for isolation and purification of rhein from Rheum officinale Baill (Dahuang) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:5:5, v/v), which had been selected by analytical (HSCCC). Using two preparative units of the HSCCC centrifuge, about a 500 mg amount of the crude extract was separated, yielding 6.7 mg of rhein at a high purity of over 97%.  相似文献   

8.
A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of coumarins from Peucedanum praeruptorum Dunn (Baihuaqianhu in Chinese) was successfully established by using light petroleum-ethyl acetate-methanol-water as the two-phase solvent system in gradient elution mode. The upper phase of light petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v) was used as the stationary phase of HSCCC. The mobile phase used in HSCCC was the lower phase of light petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v) and light petroleum-ethyl acetate-methanol-water (5:5:6.5:3.5, v/v) that was changed in gradient. Four kinds of coumarins and another unknown compound were obtained and yielded 5.3 mg of qianhucoumarin D, 7.7 mg of Pd-Ib, 35.8 mg of (+)-praeruptorin A, 31.9 mg of (+)-praeruptorin B and 6.4 mg of unknown compound with the purity of 98.6%, 92.8%, 99.5%, 99.4% and 99.8% in one-step separation, respectively. The structures of the coumarins were identified by 1H NMR and 13C NMR.  相似文献   

9.
高速逆流色谱分离制备陈皮中的黄酮类化合物   总被引:6,自引:0,他引:6  
应用高速逆流色谱法分离制备了陈皮中3种黄酮类化合物。以石油醚-乙酸乙酯-甲醇-水(体积比为2∶4∶3∶3)为两相溶剂系统,在主机转速850 r/min、流动相流速1.7 mL/min、检测波长280 nm条件下进行分离制备,6 h内从4.0 g陈皮粗提物中一步分离制备得到橙皮苷10.1 mg、桔皮素49.8 mg和5-羟基-6,7,8,3′,4′-五甲氧基黄酮50.6 mg,纯度均达97.0%以上,各化合物结构经质谱和核磁共振氢谱、碳谱鉴定。利用该方法可以对陈皮中的黄酮类化合物进行快速的分离和纯化。  相似文献   

10.
High-speed counter-current chromatography (HSCCC) was applied to the preparative isolation and purification of peonidin 3-O-(6-O-(E)-caffeoyl-2-O-β-D -glucopyranosyl-β-D -glucopyranoside)-5-O-β-D -glucoside ( 1 ), cyanidin 3-O-(6-O-p-coumaroyl)-β-D -glucopyranoside ( 2 ), peonidin 3-O-(2-O-(6-O-(E)-caffeoyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 3 ), peonidin 3-O-(2-O-(6-O-(E)-feruloyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 4 ) from purple sweet potato. Separation of crude extracts (200 mg) from the roots of purple sweet potato using methyl tert-butyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (1:4:1:5:0.01, v/v) as the two-phase solvent system yielded 1 (15 mg), 2 (7 mg), 3 (10 mg), and 4 (12 mg). The purities of 1 – 4 were 95.5%, 95.0%, 97.8%, and 96.3%, respectively, as determined by HPLC. Compound 2 was isolated from purple sweet potato for the first time. The chemical structures of these components were identified by 1H NMR, 13C NMR and ESI-MSn.  相似文献   

11.
高速逆流色谱分离纯化蔓荆子中的活性成分   总被引:2,自引:0,他引:2  
管仁军  王岱杰  于宗渊  王晓  蓝天凤 《色谱》2010,28(11):1043-1047
应用高速逆流色谱法(HSCCC)分离纯化蔓荆子中的活性成分。以石油醚-乙酸乙酯-甲醇-水(体积比为3:6:3.6:3)为两相溶剂体系,在转速为800 r/min、流速为1.5 mL/min、检测波长为254 nm的条件下进行分离,所得馏分经高效液相色谱法(HPLC)检测,并经电喷雾电离(ESI)质谱和核磁共振谱(NMR)鉴定化合物的结构。从250 mg蔓荆子粗提物中一次性分离得到4个化合物,分别为23 mg对羟基苯甲酸、15 mg 3,6,7-三甲基槲皮万寿菊素、24 mg蔓荆子黄素和5 mg蒿黄素,其纯度约为93.1%、 97.3%、 98.7%和98.5%。该法具有简便、快速、重复性好的优点,为分离蔓荆子中的活性成分提供了新的方法。  相似文献   

12.
Peng J  Fan G  Hong Z  Chai Y  Wu Y 《Journal of chromatography. A》2005,1074(1-2):111-115
High-speed counter-current chromatography (HSCCC) with a solvent system composed of ethyl acetate-n-butanol-water (2:1:3, v/v/v) was used to isolate and separate two C-glycosylflavones from Patrinia villosa Juss, a traditional Chinese medicine. The separation produced 42.9 mg isovitexin and 20.1 mg isoorientin with purities of 99.3% and 98.5%, respectively as determined by high-performance liquid chromatography (HPLC) in one step elution from 250 mg crude extract, and identification was performed by MS, 1H NMR and 13C NMR. It is the first report of discovering isovitexin and isoorientin from the plant of Patrinia genus.  相似文献   

13.
High-speed counter-current chromatography (HSCCC) was successfully applied to the preparative separation and purification of deoxyschisandrin and gamma-schisandrin from the crude petroleum ether extracts of Schisandra chinensis (Turcz.) Baill. The optimum solvent system composed of n-hexane-methanol-water (35:30:3, v/v) led to the successful preparation of deoxyschisandrin and gamma-schisandrin. The analysis of HPLC for each peak fraction of preparative HSCCC showed that the purity of deoxyschisandrin (8 mg) was over 98% and gamma-schisandrin (12 mg) was over 96% from 100 mg of the crude petroleum ether extracts in one-step separation.  相似文献   

14.
Y Wang  M Liu  L Zheng  L Yin  L Xu  Y Qi  X Ma  K Liu  J Peng 《Journal of separation science》2012,35(15):1977-1984
High-speed counter-current chromatography (HSCCC) coupled with ultraviolet (UV) detection or evaporative light-scattering detection was successfully applied for preparative separation of five bioactive compounds from Agrimonia pilosa Ledeb. In preliminary process, D101 macroporous resin was used to separate the crude extract of the plant and four fractions (20, 40, 50, and 60% aqueous ethanol elutions) were produced. Then, these fractions were directly subjected to HSCCC purification. Five chemicals including taxifolin-3-glucoside (6.4 mg), quercetin-3-rhamnoside (13.0 mg), tiliroside (14.7 mg), agrimonolide (21.4 mg), and tormentic acid (29.8 mg) with the purities of 94.24, 95.37, 97.42, 95.29, and 96.34% were separated from each 200 mg prepared fraction. The purities were analyzed by high-performance liquid chromatography, and the chemical structures of the products were identified by UV detection, mass spectrometry, nuclear magnetic resonance, and the standards. This paper used a simple method to separate five bioactive compounds from A. pilosa Ledeb, and it could provide a new idea for the purification of bioactive compounds from other medicinal plants.  相似文献   

15.
Liu R  Li A  Sun A  Kong L 《Journal of chromatography. A》2004,1057(1-2):225-228
Psoralen and isopsoralen were separated from Psoralea corylifolia by high-speed counter-current chromatography (HSCCC). A two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (5:5:4.5:5.5, v/v) was used for HSCCC separation, and yielded, from 100 mg of crude extract, 39.6 mg of psoralen and 50.8 mg of isopsoralen each at over 99% purity as determined by high performance liquid chromatography (HPLC). The identification of psoralen and isopsoralen were performed with 1H NMR and 13C NMR.  相似文献   

16.
A preparative high-speed counter-current chromatography (HSCCC) was successively applied to purify three flavonoid glycosides from the aerial part of Taraxacum mongolicum, a traditional Chinese medicine. Subsequent UV, MS, and NMR analyses have led to the characterization of three flavonoid glycosides including two new compounds isoetin-7-O-beta-D-glucopyranosyl-2'-O-alpha-L-arabinopyranoside and isoetin-7-O-beta-D-glucopyranosyl-2'-O-alpha-D-glucopyranoside, and a known compound, isoetin-7-O-beta-D-glucopyranosyl-2'-O-alpha-D-xyloypyranoside, which were first isolated from T. mongolicum. The two-phase solvent system composed of ethyl acetate/n-butanol/water (2:1:3, v/v/v) was performed in HSCCC. Consequently, a total of 25.7 mg isoetin-7-O-beta-D-glucopyranosyl-2'-O-alpha-L-arabinopyranoside, 19.1 mg isoetin-7-O-beta-D-glucopyranosyl-2'-O-alpha-D-glucopyranoside, and 10.6 mg isoetin-7-O-beta-D-glucopyranosyl-2'-O-alpha-D-xyloypyranoside were obtained with purity of 98.7, 98.3, and 99.1%, respectively, as determined by HPLC from 500 mg enriched extract after cleaning-up by polyamide resin.  相似文献   

17.
Jiang L  Lu Y  He S  Pan Y  Sun C  Wu T 《Journal of separation science》2008,31(22):3930-3935
High-speed counter-current chromatography (HSCCC) was applied to the preparative isolation and purification of two amides from Mallotus lianus Croiz. In a single HSCCC separation, using the two-phase solvent system composed of n-hexane/ethyl acetate/methanol/water (5:1:5:1 v/v), 247.5 mg of the enriched crude sample was separated to afford 10.3 mg of N-isobutyl-2E,4E,12Z-octadecatrienamide and 15.7 mg of (7Z,10Z,18Z)tricosa-7,10,18-trienamide, a novel compound, with the purities of 98.0 and 94.6%, respectively. The HSCCC fractions were analyzed by HPLC and chemical structures of the compounds were identified by 1D- and 2D-NMR, ESI-, and GC-MS.  相似文献   

18.
This study employed the online HPLC-2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)(+) bioassay to rapidly determine the antioxidant compounds occurring in the crude extract of Alnus japonica. The negative peaks of the ABTS(+) radical scavenging detection system, which indicated the presence of antioxidant activity, were monitored by measuring the decrease in absorbance at 734 nm. The ABTS(+)-based antioxidant activity profile showed that three negative peaks exhibited antioxidant activity. High-speed counter-current chromatography (HSCCC) was used for preparative scale separation of the three active peaks from the extract. The purity of the isolated compounds was analyzed by HPLC and their structures were identified by (1)H- and (13)C-nuclear magnetic resonance spectrometry (NMR), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum correlation (HSQC). Two solvent systems composed of n-hexane/ethylacetate/methanol/water (4:6:4:6, v/v) and of ethyl acetate/methanol/water (1:0.1:1, v/v) were performed in high-speed counter-current chromatography. Consequently, a total of 527 mg of hirsutanonol 5-O-β-D-glucopyranoside, 80.04 mg of 3-deoxohirsutenonol 5-O-β-D-glucopyranoside, and 91.0 mg of hirsutenone were obtained with purity of 94.7, 90.5, and 98.6%, respectively.  相似文献   

19.
Forsythia suspensa (Thunb.) Vahl. has been used widely in traditional medicines to treat gonorrhea, erysipelas, inflammation, pyrexia and ulcer. It has also shown antioxidant activity, as well as antibacterial, antiviral, choleretic and antiemetic effects. A high-speed counter-current chromatography (HSCCC) method was developed for the preparative separation and purification of the bioactive molecule phillyrin from F. suspensa (Thunb.) Vahl. The crude phillyrin was obtained by extraction with 50% ethanol from the dried fruits of F. suspensa (Thunb.) Vahl. under sonication. Preparative HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-ethanol-water (1:9:1:9, v/v/v/v) was successfully performed, and the components purified and collected were analyzed by high-performance liquid chromatography. The method yielded 5.6 mg phillyrin at 98.6% purity from 500 mg of the crude extract (1.2% phillyrin) with the recovery of 92% in a one-step separation.  相似文献   

20.
High-speed counter-current chromatography was successfully applied for the first time to the isolation and purification of the bioactive carotenoid zeaxanthin from the cyanobacterium Microcystis aeruginosa. The crude zeaxanthin was obtained by extraction with organic solvents after the microalgal sample had been saponified. Preparative high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-ethyl acetate-ethanol-water (8:2:7:3, v/v/v/v) was successfully performed yielding zeaxanthin at 96.2% purity from 150 mg of the crude extract in a one-step separation. The recovery of zeaxanthin was 91.4%. This was also the first report that zeaxanthin was successfully separated and purified from microalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号