首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
A porous and highly efficient polyaniline‐based solid‐phase microextraction (SPME) coating was successfully prepared by the electrochemical deposition method. A method based on headspace SPME followed by HPLC was established to rapidly determine trace chlorophenols in water samples. Influential parameters for the SPME, including extraction mode, extraction temperature and time, pH and ionic strength procedures, were investigated intensively. Under the optimized conditions, the proposed method was linear in the range of 0.5–200 μg/L for 4‐chlorophenol and 2,4,6‐trichlorophenol, 0.2–200 μg/L for 2,4‐dichlorophenol and 2–200 μg/L for 2,3,4,6‐tetrachlorophenol and pentachlorophenol, with satisfactory correlation coefficients (>0.99). RSDs were <15% (n = 5) and LODs were relatively low (0.10–0.50 μg/L). Compared to commercial 85 μm polyacrylate and 60 μm polydimethylsiloxane/divinylbenzene fibers, the homemade polyaniline fiber showed a higher extraction efficiency. The proposed method has been successfully applied to the determination of chlorophenols in water samples with satisfactory recoveries.  相似文献   

2.
Monolithic fibers were synthesized and applied for the solid‐phase microextraction and determination of chlorophenols in environmental water samples by coupling with HPLC. The fibers were prepared by copolymerization of vinylimidazole and ethylene dimethacrylate as functional monomer and cross‐linker, respectively. The effect of the preparation conditions of monolithic fibers on the extraction efficiencies was investigated in detail. Several characteristic techniques, such as elemental analysis, infrared spectroscopy, mercury‐intrusion porosimetry, and SEM were used to characterize the monolithic material. The effect of the extraction parameters, including desorption solvent, extraction and desorption time, pH values, and ionic strength in sample matrix on the extraction performance was investigated thoroughly. Under the improved extraction conditions, the linear ranges of 2‐chlorophenol, 2,4‐dichlorophenol and pentachlorophenol were 1.0–200 μg/L and 2.0–200 μg/L for 2,4,6‐trichlorophenol. The detection limits (S/N = 3) were in the range of 0.16–0.45 μg/L, the RSDs for intraday and interday precisions were <7.0%. Finally, the proposed method was successfully used to detect different environmental water samples. The recoveries of spiked water samples were ranged from 90.0 to 115%. At the same time, satisfactory repeatability was achieved with RSDs < 9.0%.  相似文献   

3.
A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100–200 nm for polyamide nanofibers with a homogeneous and porous surface structure. The extraction efficiency of new coating was investigated for headspace solid-phase microextraction (HS-SPME) of some environmentally important chlorophenols from aqueous samples followed by gas chromatography–mass spectrometry (GC–MS) analysis. Effect of different parameters influencing the extraction efficiency including extraction temperature, extraction time, ionic strength and polyamide amount were investigated and optimized. In order to improve the chromatographic behavior of phenolic compounds, all the analytes were derivatized prior to the extraction process using basic acetic anhydride. The detection limits of the method under optimized conditions were in the range of 2–10 ng L−1. The relative standard deviations (RSD) (n = 3) at the concentration level of 1.7–6.7 ng mL−1 were obtained between 1 and 7.4%. The calibration curves of chlorophenols showed linearity in the range of 27–1330 ng L−1 for phenol and monochlorophenols and 7–1000 ng L−1 for dichloro and trichlorophenols. Also, the proposed method was successfully applied to the extraction of phenol and chlorophenols from real water samples and relative recoveries were between 84 and 98% for all the selected analytes except for 2,4,6 tricholophenol which was between 72 and 74%.  相似文献   

4.
Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid–liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid–liquid microextraction was carried out using an organic solvent lighter than water (n‐hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05–100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4‐chlorophenol, 2,4‐dichlorophenol, and 2,4,6‐trichlorophenol, respectively. The values of intra‐ and inter‐day relative standard deviations were in the range of 3.0–6.4 and 6.1–9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples.  相似文献   

5.
UV filters, contained in sunscreens and other cosmetic products, as well as in some plastics and industrial products, are nowadays considered contaminants of emerging concern because their widespread and increasing use has lead to their presence in the environment. Furthermore, some UV filters are suspected to have endocrine disruption activity. In the present work, we developed an analytical method based on liquid chromatography with tandem mass spectrometry for the determination of UV filters in tap and lake waters. Sixteen UV filters were extracted from water samples by solid‐phase extraction employing graphitized carbon black as adsorbent material. Handling 200 mL of water sample, satisfactory recoveries were obtained for almost all the analytes. The limits of detection and quantification of the method were comparable to those reported in other works, and ranged between 0.7–3.5 and 1.9–11.8 ng/L, respectively; however in our case the number of investigated compounds was larger. The major encountered problem in method development was to identify the background contamination sources and reduce their contribution. UV filters were not detected in tap water samples, whereas the analyses conducted on samples collected from three different lakes showed that the swimming areas are most subject to UV filter contamination.  相似文献   

6.
An application of the direct coupling of solid-phase microextraction (SPME) with mass spectrometry (MS), a technique known as fiber introduction mass spectrometry (FIMS), is described to determine organochlorine (OCP) and organophosphorus (OPP) pesticides in herbal infusions of Passiflora L. A new fiber coated with a composite of poly(dimethylsiloxane) and poly(vinyl alcohol) (PDMS/PVA) was used. Sensitive, selective, simple and simultaneous quantification of several OCP and OPP was achieved by monitoring diagnostic fragment ions of m/z 266 (chlorothalonil), m/z 195 (alpha-endosulfan), m/z 278 (fenthion), m/z 263 (methyl parathion) and m/z 173 (malathion). Simple headspace SPME extraction (25 min) and fast FIMS detection (less than 40 s) of OCP and OPP from a highly complex herbal matrix provided good linearity with correlation coefficients of 0.991-0.999 for concentrations ranging from 10 to 140 ng ml(-1) of each compound. Good accuracy (80 to 110%), precision (0.6-14.9%) and low limits of detection (0.3-3.9 ng ml(-1)) were also obtained. Even after 400 desorption cycles inside the ionization source of the mass spectrometer, no visible degradation of the novel PDMS/PVA fiber was detected, confirming its suitability for FIMS. Fast (ca 20 s) pesticide desorption occurs for the PDMS/PVA fiber owing to the small thickness of the film and its reduced water sorption.  相似文献   

7.
Zhang LH  Zhang CJ  Chen X  Feng YQ  Wu XZ 《Electrophoresis》2006,27(16):3224-3232
A novel CE method combined with SPE in a single capillary was developed for analysis of chlorophenols in water. A frit of 0.5 mm was first made by a sol-gel method, followed by packing a SPE sorbent in the inlet end of the capillary. Two phenol derivatives, 2,4-dichlorophenol and 2,4,5-trichlorophenol, were used as the model compounds. By loading sample solutions into the capillary, the two chlorophenols were extracted into the sorbent. They were desorbed by injecting only about 4 nL of methanol. Finally, the analytes were separated by conventional CE. The technique provided a concentration enhancement factor of over 4000-fold for both chlorophenols. The detection limits (S/N = 3) of 2,4-dichlorophenol and 2,4,5-trichlorophenol were determined to be 0.1 ng/mL and 0.07 ng/mL, respectively. For replicate analyses of 5 ng/mL of 2,4-dichlorophenol, within-day and between-day RSDs of migration time, peak height and peak area were in the range of 1.8-2.0%, 4.0-4.4% and 4.1-4.6%, respectively. The method shows wide linear range, acceptable reproducibility and excellent sensitivity, and it was applied to the analyses of spiked river water samples. The capillary packed with the SPE sorbents can be used for more than 400 runs without performance deterioration.  相似文献   

8.
Headspace solid phase microextraction (HS-SPME) was optimized for the analysis of pesticides with gas chromatography electron capture detection (GC-ECD) and high-resolution mass spectrometry. Factors influencing the extraction efficiency such as fiber type, extraction mode and temperature, effect of ionic strength, stirring and extraction time were evaluated. The lowest pesticide concentrations that could be detected in spiked aliquots after HS-SPME–GC-ECD ranged from 0.0005 to 0.0032 μg L− 1. Consequently hexachlorobenzene, trans-chlordane, 4,4′-DDD and 4,4′-DDE were detected in water samples after HS-SPME at concentrations ranging from 2.4 to 61.4 μg L− 1 that are much higher than the 0.1 μg L− 1 maximum limit of individual organochlorine pesticides in drinking water set by the European Community Directive. The same samples were cleaned with ISOLUTE C18 SPE sorbent with an optimal acetone/n-hexane (1:1 v/v) mixture for the elution of analytes. No pesticides were detected after SPE clean-up and pre-concentration. Precision for both methods was satisfactory with relative standard deviations less than 20%. This work demonstrated the superiority of HS-SPME as a sample clean-up and pre-concentration technique for pesticides in water samples as well as the need to identify and control point sources of pesticides.  相似文献   

9.
A novel amino-functionalized polymer was synthesized using 3-(trimethoxysilyl) propyl amine (TMSPA) as precursor and hydroxy-terminated polydimethylsiloxane (OH-PDMS) by sol–gel technology and coated on fused-silica fiber. The synthesis was designed in a way to impart polar moiety into the coating network. The scanning electron microscopy (SEM) images of this new coating showed the homogeneity and the porous surface structure of the film. The efficiency of new coating was investigated for headspace solid-phase microextraction (SPME) of some environmentally important chlorophenols from aqueous samples followed by gas chromatography–mass spectrometry (GC–MS) analysis. Effect of different parameters influencing the extraction efficiency such as extraction temperature, extraction time, ionic strength and pH was investigated and optimized. In order to improve the separation efficiency of phenolic compounds on chromatography column all the analytes were derivatized prior to extraction using acetic anhydride at alkaline condition. The detection limits of the method under optimized conditions were in the range of 0.02–0.05 ng mL−1. The relative standard deviations (R.S.D.) (n = 6) at a concentration level of 0.5 ng mL−1 were obtained between 6.8 and 10%. The calibration curves of chlorophenols showed linearity in the range of 0.5–200 ng mL−1. The proposed method was successfully applied to the extraction from spiked tap water samples and relative recoveries were higher than 90% for all the analytes.  相似文献   

10.
A method was developed for the determination of clenbuterol in meat using stable‐isotope‐dilution gas chromatography with mass spectrometry coupled with solid‐phase microextraction and on‐fiber derivatization. The samples were first homogenized with hydrochloric acid followed by protein deposition. After headspace solid‐phase microextraction and on‐fiber derivatization, the content of clenbuterol was measured with the aid of stable‐isotope dilution. The condition of solid‐phase microextraction was optimized by central composite design. The relative standard deviations, limit of detection, and recoveries for clenbuterol were 4.2–9.2%, 0.48 μg/kg, and 96–104%, respectively. The proposed method was satisfactory for analysis of real samples as compared with the Chinese standard method.  相似文献   

11.
Elci L  Kolbe N  Elci SG  Anderson JT 《Talanta》2011,85(1):551-555
Solid-phase extraction (SPE) followed by derivatization and gas chromatography-atomic emission detection (GC-AED) was evaluated for the determination of five chlorophenols (CPs) in water samples. The derivatization was based on the esterification of phenolic compounds with ferrocenecarboxylic acid. The determination of the derivatized phenols was performed by GC-AED in the iron selective detection mode at 302 nm. The described method was tested on spiked water samples.The overall method gave detection limits of 1.6-3.7 ng L−1 and recoveries of 90.9-104.5% for the examined mono- to trichlorophenols in 10 mL water samples. The CPs extracted from a 10 mL water sample with SPE were concentrated into 100 μL of organic solvent, a preconcentration factor of 100. The method was applied to lake and tap water samples, and CP contents between 6 and 51 ng L−1 in lake water and between below the detection limit and 8 ng L−1 in tap water were found for different CPs. The method is quick, simple and gives excellent recoveries, limits of detection and standard deviations.  相似文献   

12.
An aniline-based polymer was electrochemically prepared and applied as a new fiber coating for solid phase microextraction (SPME) of some priority phenols from water samples. The polyaniline (PANI) film was directly electrodeposited on the platinum wire surface in sulfuric acid solution using cyclic voltammetry (CV) technique. The efficiency of new coating was investigated using a laboratory-made SPME device and gas chromatography with flame ionization detection for the extraction of some phenols from the headspace of aqueous samples. The scanning electron microscopy (SEM) images showed the homogeneity and the porous surface structure of the film. The results obtained proved the ability of this polymer as a suitable SPME fiber coating for trapping the selected phenols. Influential parameters affecting the extraction process were optimized and an extraction time of 50 min at 50 °C gave maximum efficiency, when the aqueous sample was saturated with NaCl and adjusted at pH 2. This new coating can be prepared easily in a reproducible manner and it is rather inexpensive and stable against most of organic solvents. The PANI thickness can be precisely controlled by the number of CV cycles. At the optimum conditions, the R.S.D. for a double distilled water spiked with phenol and chlorophenols at ppb level were 4.8-17% (n = 3) and detection limits for the studied compounds were between 0.69 and 3.7 ng ml−1, except for phenol and 4-chlorophenol. The optimized method was successfully applied to some real-life water samples.  相似文献   

13.
In this work an analytical procedure based on headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry (HS-SPME–GC/MS) is proposed to determine chlorophenols with prior derivatization step to improve analyte volatility and therefore the decision limit (CCα). After optimization, the analytical procedure was applied to analyze river water samples. The following analytes are studied: 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,4,6-TeCP) and pentachlorophenol (PCP). A D-optimal design is used to study the parameters affecting the HS-SPME process and the derivatization step. Four experimental factors at two levels and one factor at three levels were considered: (i) equilibrium/extraction temperature, (ii) extraction time, (iii) sample volume, (iv) agitation time and (v) equilibrium time. In addition two interactions between four of them were considered. The D-optimal design enables the reduction of the number of experiments from 48 to 18 while maintaining enough precision in the estimation of the effects. As every analysis took 1 h, the design is blocked in 2 days.  相似文献   

14.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was evaluated for the simultaneous determination of five chlorophenols and seven haloanisoles in wines and cork stoppers. Parameters, such as the nature and volume of the extracting and disperser solvents, extraction time, salt addition, centrifugation time and sample volume or mass, affecting the DLLME were carefully optimized to extract and preconcentrate chlorophenols, in the form of their acetylated derivatives, and haloanisoles. In this extraction method, 1mL of acetone (disperser solvent) containing 30μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5mL of sample solution containing 200μL of acetic anhydride (derivatizing reagent) and 0.5mL of phosphate buffer solution, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation, and a volume of 4μL of the sedimented phase was analyzed by GC-MS. The wine samples were directly used for the DLLME extraction (red wines required a 1:1 dilution with water). For cork samples, the target analytes were first extracted with pentane, the solvent was evaporated and the residue reconstituted with acetone before DLLME. The use of an internal standard (2,4-dibromoanisole) notably improved the repeatability of the procedure. Under the optimized conditions, detection limits ranged from 0.004 to 0.108ngmL(-1) in wine samples (24-220pgg(-1) in corks), depending on the compound and the sample analyzed. The enrichment factors for haloanisoles were in the 380-700-fold range.  相似文献   

15.
《Electrophoresis》2018,39(19):2431-2438
Dispersive liquid–liquid microextraction (DLLME) coupled with CE was developed for simultaneous determination of five types of chlorophenols (CPs), namely 2‐chlorophenol (2‐CP), 4‐chlorophenol (4‐CP), 2,4‐dichlorophenol (2,4‐DCP), 2,6‐dichlorophenol (2,6‐DCP), and 2,4,6‐trichlorophenol (2,4,6‐TCP) in water samples. Several parameters affecting DLLME and CE conditions were systematically investigated. Under the optimized DLLME‐CE conditions, the five CPs were separated completely within 7.5 min and good enrichment factors were obtained of 40, 193, 102, 15, and 107 for 4‐CP, 2,4,6‐TCP, 2,4‐DCP, 2‐CP, and 2,6‐DCP, respectively. Good linearity was attained in the range of 1–200 μg/L for 2,4,6‐TCP, 2,4‐DCP, 2−300 μg/L for 4‐CP and 2‐CP, and 1−300 μg/L for 2,6‐DCP, with correlation coefficients (r) over 0.99. The LOD (S/N = 3) and the LOQ (S/N = 10) were 0.31−0.75 μg/L and 1.01−2.43 μg/L, respectively. Recoveries ranging from 60.85 to 112.36% were obtained with tap, lake, and river water spiked at three concentration levels and the RSDs (for n = 3) were 1.31–11.38%. With the characteristics of simplicity, cost‐saving, and environmental friendliness, the developed DLLME‐CE method proved to be potentially applicable for the rapid, sensitive, and simultaneous determination of trace CPs in complicated water samples.  相似文献   

16.
The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 μL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals.Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 μg L−1 with a detection limit of 0.5 μg L−1. The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 μg L−1 of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 μg L−1 ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.  相似文献   

17.
18.
In this paper, carbon nanofibers (CNFs) as a novel solid phase extraction sorbent were developed for speciation preconcentration and separation of inorganic arsenic species As(III) and As(V) prior to determination by inductively coupled plasma mass spectrometry (ICP-MS). It was found that during all the steps of the separation, As(III) was selectively sorbed on the microcolumn packed with CNFs within a pH range of 1.0-3.0 in the presence of ammonium pyrroinedithiocarbamate (APDC), while As(V) was passed through the microcolumn without the retention. Various experimental parameters affecting the separation and determination of As(III) and As(V) have been investigated in detail. Under the optimized conditions, the detection limits of this method for As(III) were 0.0045 ng mL−1 with an enrichment factor of 33 and 0.24 ng mL−1 for As(V), and the relative standard deviations for As(III) and As(V) were 2.6% and 1.9% (n = 9, c = 1.0 ng mL−1), respectively. In order to verify the accuracy of the method, a certified reference of water sample was analyzed, and the results obtained were in good agreement with the certified values. The proposed method was applied for the analysis of inorganic arsenic species in groundwater and lake water with the recovery of 92-106%.  相似文献   

19.
This work describes the utilization of the focused microwave-assisted micellar extraction in combination with the solid-phase microextraction (SPME) to determine chlorophenols in wood samples. The influence of the nature of the surfactant in the extraction process, the optimization of the variables of the focused-microwave system, and the effect of the ageing time of the samples in the extraction efficiency of the method, have been assessed in this study. The overall method using the non-ionic surfactant POLE as extracting medium allows us to determine chlorophenols in wood samples achieving an average extraction efficiency of 104.1%, limits of detection ranging from 2 to 120 ng g−1, and intermediate precision values ranging between 3.5 and 13.2%. The proposed method is also characterized by short analysis times (around 5 min for the microwaves extraction step) and by avoiding the use of organic solvents.  相似文献   

20.
A multiresidue method for the determination of more than 80 pesticides in water has been developed and validated. The proposed method is based on SPE followed by GC coupled to MS/MS. Different variables affecting SPE procedure, such as cartridges, sample volume and solvents were studied, and mass spectrometric conditions were optimised in order to increase selectivity and sensitivity. Calibration curves were linear over the range of 0.03-0.5 microg/L. Recoveries were in the range of 70-110% and repeatability was below 20% for the lowest calibration point. LODs ranged from 0.001 to 0.025 microg/L and LOQs from 0.003 to 0.076 microg/L. Finally, the method was successfully applied to the analysis of water samples from southeast of Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号