首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Argon retention in silicon has been studied by AES in the energy range between 1 and 15 keV at bombardment fluences up to ~1018 ions/cm2. AES data of implanted argon in silicon near the surface region, as obtained during sputtering, can be interpreted qualitatively by a simple model of ion collection. Discrepancies between calculated and measured saturation values of collected argon ions indicate that during implantation at high fluences addition surface effects become important and that the simple model of ion collection has to account for this. Quantitative AES correlated with RBS indicates pronounced concentration gradients of argon in silicon near surface regions.  相似文献   

2.
The effect of low energy noble gas ion bombardment on the electrical and optical properties of Si(211) surfaces has been investigated by surface conductivity and field effect measurements, ellipsometry and AES. With this combination of techniques, information is obtained concerning the electrical properties, the chemical composition and the damage of the surface layer. Upon ion bombardment in the energy range of 500–2000 eV, ellipsometry shows the formation of a damaged surface layer with optical properties close to those of an evaporated amorphous silicon film. In order to measure the conductivity changes as sensitive as possible, nearly intrinsic silicon crystals were used. For the clean, 5200 Ω cm Si(211) surface, bombarded only with a mass-analyzed argon ion beam, a small increase in conductivity is found to occur after a small ion dose (saturation after 5 × 1014 ions cm?2 while after 5 × 1013 ions cm?2 already half of the increase has occurred). The effect was found to be independent of ion energy between 500 and 2000 eV. As the field effect signal did not change after this treatment, it is concluded that the surface state density in the neighbourhood of the Fermi level shows a slight decrease.  相似文献   

3.
The effects of bombardment of 250 keV argon ions in n-type GaSb at fluences 2×1015 and 5×1015 ions cm?2 were investigated by high-resolution X-ray diffraction (HRXRD), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). HRXRD studies revealed the presence of radiation-damaged layer (strained) peak in addition to the substrate peak. The variation in the lattice constant indicates the strain in the bombarded region. The out-of-plane (?) and in-plane strains (?|) determined from the profiles of several symmetric and asymmetric Bragg reflections, respectively, were found to change with the ion fluence. Simulations of XRD patterns using dynamical theory of X-ray scattering (single-layer model) for the damaged layer yielded good fits to the recorded profiles. FTIR transmission studies showed that the optical density (α·d) of GaSb bombarded with different fluences increases near the band edge with increase in ion fluence, indicating the increase in the defect concentration. The density of the defects in the samples bombarded with different fluences was in the range of 3.20×1021–3.80×1021 cm?3. The tailing energy estimated from the transmission spectra was found to change from 12.0 to 58.0 meV with increasing ion fluences, indicating the decrease of crystallinity at higher fluences. SEM micrographs showed the swelling of the bombarded surface of about 0.33 μm for the fluence of 2×1015 ions cm?2, which increased to 0.57 μm for the fluence of 5×1015 ions cm?2.  相似文献   

4.
The disorders induced in crystalline silicon (c-Si) through the process of electronic energy loss in the swift heavy ion irradiation were investigated. A number of silicon <1 0 0> samples were irradiated with 65 MeV oxygen ions at different fluences, 1×1013 to 1.5×1014 ions/cm2, and characterized by the Raman spectroscopy, the optical reflectivity, the X-ray reflectivity, the atomic force microscopy (AFM) and the X-ray diffraction (XRD) techniques. The intensity, redshift, phonon coherence length and asymmetric broadening associated with the Raman peaks reveal that stressed and disordered lattice zones are produced in the surface region of the irradiated silicon. The average crystallite size, obtained by analyzing Raman spectrum with the phonon confinement model, was very large in the virgin silicon but decreased to<100 nm dimension in the ion irradiated silicon. The results of the X-ray reflectivity, AFM and optical reflectivity of 200–700 nm radiation indicate that the roughness of the silicon surface has enhanced substantially after ion irradiation. The diffusion of oxygen in silicon surface during ion irradiation is evident from the oscillation in the X-ray reflectivity spectrum and the sharp decrease in the reflectivity of 200–400 nm radiation. The rise in temperature, estimated from the heat spike model, was high enough to melt the local silicon surface. The results of XRD indicate that lattice defects have been induced and a new plane <2 1 1> has been formed in the silicon <1 0 0>after ion irradiation. The results of the present study show that the energy deposited in crystalline silicon through the process of electronic energy loss ~0.944 keV/nm per ion is sufficient to induce disorders of appreciable magnitude in the silicon surface even at a fluence of ~1013 ions/cm2.  相似文献   

5.
J.L. Pen̄a 《Surface science》1981,109(3):L550-L554
AES studies of argon ion induced desorption of carbon from tantalum were performed. The carbon adlayer was allowed to adsorb from a well characterized residual gas atmosphere, that was unvarying within 20%. The argon ions impact on the surface at an angle of 60° from the surface normal with energies between 0.2 to 1.0 keV. The total desorption cross section values measured under these conditions are 0.07–1.1 × 10?15 cm2.  相似文献   

6.
Laser induced ion emission from wide bandgap materials   总被引:1,自引:0,他引:1  
At fluences well below the threshold for plasma formation, we have characterized the direct desorption of atomic ions from fused silica surfaces during 157 nm irradiation by time-resolved mass spectroscopy. The principal ions are Si+ and O+. The emission intensities are dramatically increased by treatments that increase the density of surface defects. Molecular dynamics simulations of the silica surface suggest that silicon ions bound at surface oxygen vacancies (analogous to E′ centers) provide suitable configurations for the emission of Si+. We propose that emission is best understood in terms of a hybrid mechanism involving both antibonding chemical forces (Menzel-Gomer-Redhead model) and repulsive electrostatic forces on the adsorbed ion after laser excitation of the underlying defect.  相似文献   

7.
ABSTRACT

In the present work, effects of silicon negative ion implantation into semi-insulating gallium arsenide (GaAs) samples with fluences varying between 1?×?1015 and 4?×?1017?ions?cm?2 at 100?keV have been described. Atomic force microscopic images obtained from samples implanted with fluence up to 1?×?1017?ion?cm?2 showed the formation of GaAs clusters on the surface of the sample. The shape, size and density of these clusters were found to depend on ion fluence. Whereas sample implanted at higher fluence of 4?×?1017?ions?cm?2 showed bump of arbitrary shapes due to cumulative effect of multiple silicon ion impact with GaAs on the same place. GXRD study revealed formation of silicon crystallites in the gallium arsenide sample after implantation. The silicon crystallite size estimated from the full width at half maxima of silicon (111) XRD peak using Debye-Scherrer formula was found to vary between 1.72 and 1.87?nm with respect to ion fluence. Hall measurement revealed the formation of n-type layer in gallium arsenide samples. The current–voltage measurement of the sample implanted with different fluences exhibited the diode like behavior.  相似文献   

8.
Reordering of 〈111〉 silicon, implanted with Pb ions at energies >100 keV and fluences ~5 × 1015 cm?2 is accompanied by substantial impurity indiffusion in addition to pronounced outdiffusion and accumulation at the near surface region.  相似文献   

9.
The interaction of ions with matter plays an important role in the treatment of material surfaces. In this paper we study the effect of argon ion bombardment on the InSb surface in comparison with the InP one. The Ar+ ions, accelerated at low energy (300 eV) lead to compositional and structural changes in InP and InSb compounds. The InP surface is more sensitive to Ar+ ions than that of InSb. These results are directly inferred from the qualitative Auger electron spectra (AES) and electron energy loss spectroscopy (EELS) analysis. However, these techniques alone do not allow us to determine with accuracy the disturbed depth in Ar+ ions of InP and InSb compounds. For this reason, we combine AES and EELS with the simulation method TRIM (transport and range of ions in matter) to show the mechanism of interaction between the ions and the InP or InSb and hence determine the disturbed depth as a function of Ar+ energy.  相似文献   

10.
This paper presents the thermoluminescence (TL) studies of ion-irradiated potassium–calcium mixed sulfate phosphor. The sample was prepared by the solid-state diffusion method. The X-ray diffraction study of the prepared sample suggests an orthorhombic structure with an average particle size of 0.16 μ m. The samples were irradiated with 1.2 MeV argon ions at fluences varying between 1011 and 1015 ions/cm2. The argon ions penetrate to a depth of 1.93 μ m and lose their energy mainly via electronic stopping. Due to ion irradiation, a large number of defects such as oxygen vacancies, radicals and color centers are formed in the sample. TL glow curves were recorded for each of the ion fluences. A linear increase in the intensity of TL glow peaks was found with an increase in the ion dose from 72 kGy to 720 MGy. The kinetic parameters associated with the prominent glow peaks were calculated using glow curve deconvolution, different glow curve shapes and sample heating rate methods.  相似文献   

11.
樊永年 《物理学报》1986,35(12):1640-1645
本文使用AES-LEED联合装置研究了650—800℃温度范围内硫在镍(100)表面上的偏析动力学。结果表明,在较短退火时间内硫的表面浓度正比于退火时间的平方根,与McLean的动力学模型是一致的。扩散系数与温度的关系为D(cm2/s)=5×10-3exp(-44600/RT)。硫偏析在镍(100)表面达到饱和值,LEED观察指出形成了硫的c(2×2)结构。深度剖面分析,硫/镍俄歇峰高比随氩离子剥离时间指数降低。 关键词:  相似文献   

12.
The effect of silicon ion implantation on the optical reflection of bulk polymethylmethacrylate (PMMA) was examined in the visible and near UV. A low-energy (30 and 50 keV) Si+ beam at fluences in the range from 1013 to 1017 cm−2 was used for ion implantation of PMMA. The results show that a significant enhancement of the reflectivity from Si+-implanted PMMA occurs at appropriate implantation energy and fluence. The structural modifications of PMMA by the silicon ion implantation were characterized by means of photoluminescence and Raman spectroscopy. Formation of hydrogenated amorphous carbon (HAC) layer beneath the surface of the samples was established and the corresponding HAC domain size was estimated.  相似文献   

13.
Erbium-doped silicon has been fabricated by ion implantation performed on a metal vapour vacuum arc ion source. After rapid thermal annealing (RTA), 1.54μm photoluminescence was observed at 77K. Rutherford backscattering spectrum indicated that Er ions are mainly distributed near the surface of the samples, and Er concentration exceeded 1021cm-3. Needle nanometre crystalline silicon (nc-Si) was formed on the substrate surface. Band edge emission spectrum at 10K verified that the minority carrier lifetime increased upon RTA. The photocarrier mediated processes enabled energy transferring from nc-Si (or c-Si) to the Er3+ ions and resulted in light emission of 1.54μm.  相似文献   

14.
《Applied Surface Science》1997,115(2):166-173
Ion beam nitridation of Si(100) as a function of N+2 ion energy in the range of 2–10 keV has been investigated by in-situ Auger electron spectroscopy (AES) analysis and Ar+ depth profiling. The AES measurements show that the nitride films formed by 4–10 keV N+2 ion bombardment are relatively uniform and have a composition of near stoichiometric silicon nitride (Si3N4), but that formed by 2 keV N+2 ion bombardment is N-rich on the film surface. Formation of the surface N-rich film by 2 keV N+2 ion bombardment can be attributed to radiation-enhanced diffusion of interstitial N atoms and a lower self-sputtering yield. AES depth profile measurements indicate that the thicknesses of nitride films appear to increase with ion energy in the range from 2 to 10 keV and the rate of increase of film thickness is most rapid in the 4–10 keV range. The nitridation reaction process which differs from that of low-energy (< 1 keV) N+2 ion bombardment is explained in terms of ion implantation, physical sputtering, chemical reaction and radiation-enhanced diffusion of interstitial N atoms.  相似文献   

15.
R. Shimizu  T. Okutani 《Surface science》1982,116(1):L173-L178
Surface composition of Au-Cu(43 at%) alloy under 1.5–5 keV argon ion bombardment has been investigated by ion scattering spectroscopy (ISS). In this experiment, we adopted a specific technique to use mixed He+ and Ar+ ions as primary beam in order to perform sputtering (Ar+) and ISS measurement (He+) simultaneously. The outermost atom layer of Au-Cu alloys under Ar+ ion bombardment is Au-rich leading to the conclusion that Ar+ ion bombardment of AuCu alloys causes the preferential sputtering of Cu atoms, resulting in a Au-rich outermost atom layer and a depletion layer of Au atoms beneath the outermost atom layer due to ion-beam-enhanced surface segregation. This result explains the experimental results obtained by AES as well.  相似文献   

16.
Gold films of thickness 10 and 20 nm grown on float glass substrate by thermal evaporation technique were irradiated with 107 MeV Ag8+ and 58 MeV Ni5+ ions at different fluences and characterized by Grazing Incidence X-ray Diffraction (GIXRD) and Atomic Force Microscopy (AFM). The pristine films were continuous and no island structures were found even at these small thicknesses. The surface roughness estimated from AFM data did not show either monotonic increase or decrease with ion fluences. Instead, it increased at low fluences and decreased at high fluences for 20 nm thick film. In the 10 nm film roughness first increased with ion fluence, then decreased and again increased at higher fluences. The pattern of variation, however, was identical for Ni and Ag beams. Both the beams led to the formation of cracks on the film surface at intermediate fluences. The observed ion-irradiation induced thickness dependent topographic modification is explained by the spatial confinement of the energy deposited by ions in the reduced dimension of the films.  相似文献   

17.
We studied the nature of the effect of medium-energy ion implantation on the defect system of a crystal target over distances exceeding by three to four orders of magnitude the average projected range of ions in the target material. Recently, we discovered an especially strong manifestation of this long-range effect in crystal targets: argon ion bombardment stimulated the formation of a Si3N4 phase in nitrogen-saturated layers of a silicon wafer, the effect being observed at a distance of up to 600 μm away from the ion stopping zone. An analysis of changes in the electrical and optical properties of the nitrogen-saturated layer depending on the argon ion dose, in comparison to the morphology development on the ion-irradiated silicon surface, suggests that sufficiently effective pulsed sources of hypersonic (in the initial propagation stage) shock waves appear in the Ar+ ion stopping zone. These shock waves arise as a result of the jumplike formation and evolution of a network of dislocation loops and argon blisters, accompanied by explosions of the blisters. These processes probably proceed in a self-synchronized or spontaneous manner. Argon in the blisters occurs at T = 773 K in a solid state under a pressure of 4.5×109 Pa, the blister energy reaching up to 5×108 eV. Estimates show that the synchronized explosions of blisters in the region of a nitrogen-saturated layer at the rear side of a 600-μm-thick silicon wafer may produce a peak pressure at the wave front exceeding 108 Pa, which is sufficient to cause the experimentally observed changes.  相似文献   

18.
Amorphous carbon films (a-C:H) and nitrogen incorporated carbon films [a-C:H(N)] deposited by a self-bias glow discharge have been implanted with 70 keV nitrogen ions at fluences of 0.6, 1 and 2×1017 N/cm2. The in-depth modifications caused by ion implantation were determined by means of nuclear techniques, such as Rutherford Backscattering Spectrometry (RBS), Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA), as well as by Auger Electron Spectroscopy (AES) and Raman scattering. ERDA profiles show that nitrogen implantation causes hydrogen depletion, the amount of which depends on the film composition and on the ion fluence. In a-C:H(N) films nitrogen loss was also measured. The induced structural modifications in both a-C:H and a-C:H(N) films were followed by both AES, using factor analysis, and microprobe Raman spectroscopy. They turn out to be related to the energy deposited by the incident ions. Our results indicate that the ion-beam bombardment causes in both a-C:H and a-C:H(N) films an increase of either the degree of disorder or the ratio between sp2/sp3 bonds across the hydrogen-depleted layer, which depends on the ion fluence.  相似文献   

19.
Secondary ion emission from silicon and graphite single crystals bombarded by argon ions with energies E 0 varied from 1 to 10 keV at various angles of incidence α has been studied. The evolution of the energy spectra of C+ and Si+ secondary ions has been traced in which the positions of maxima (E max) shift toward higher secondary-ion energies E 1 with increasing polar emission angle θ (measured from the normal to the sample surface). The opposite trend has been observed for ions emitted from single crystals heated to several hundred degrees Centigrade; the E max values initially remain unchanged and then shift toward lower energies E 1 with increasing angle θ. It is established that the magnitude and position of a peak in the energy spectrum of secondary C+ ions is virtually independent of E 0, angle α, and the surface relief of the sample (in the E 0 and α intervals studied). Unusual oscillating energy distributions are discussed, which have been observed for secondary ions emitted from silicon (111) and layered graphite (0001) faces. Numerical simulations of secondary ion sputtering and charge exchange have been performed. A comparison of the measured and calculated data for graphite crystals has shown that C+ ions are formed as a result of charge exchange between secondary ions and bombarding Ar+ ions, which takes place both outside and inside the target. This substantially differs from the ion sputtering process in metals and must be taken into account when analyzing secondary ion emission mechanisms and in practical applications of secondary-ion mass spectrometry.  相似文献   

20.
We present the results of a comparative analysis of profiles of the radiation-induced segregation of chromium after irradiation of model alloys Fe-(9, 11, 14) at % Cr by He+ ions with the energy of 30 keV with fluences 1019–1021 ions/m2 at 450°C and data on varying the moduli of normal elasticity and the structure of these alloys depending on the Cr concentration. It is shown that an interstitial migration mechanism is the determining factor in the case of chromium segregation near the surface. A correlation between the character of varying the elasticity moduli, order, and value of surface segregation and swelling of the Fe-Cr alloys depending on the Cr concentration is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号