首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
动态指数分布模型及Bayes预测   总被引:2,自引:0,他引:2  
本文给出了观测值服从指数分布的动态指数分布模型,并在自然参数与状态参数之间满足线性关系ω_t=F'_tθ_t的假设下,利用共轭分布给出了动态指数分布模型多数的修正递推及其预测.  相似文献   

2.
A soil water retention curve is one of the fundamental elements used to describe unsaturated soil. The accurate determination of soil water retention curve requires sufficient available information. However, the amount of measurement data is generally limited due to the restriction of time or test apparatus. As a result, it is a challenge to determine the soil water retention curve from limited measurement data. To address this problem, a Bayesian framework is proposed. In the Bayesian framework, Bayesian updating can be employed using the posterior distribution that is obtained by the Markov chain Monte Carlo sampling method with the Delayed Rejection Adaptive Metropolis algorithm. The parameters of soil water retention curve model are represented by the sample statistics of updating posterior distribution. A new updating algorithm based on Bayesian framework is proposed to predict the soil water retention curve using the ideal data and the limited measurement data of the granite residual soil and sand. The results show that the proposed prediction algorithm exhibits an excellent capability for more accurately determining the soil water retention curve with limited measured data. The uncertainty of updating parameters and the influence of the prior knowledge can be reduced. The converged results can be derived using the proposed prediction algorithm even if the prior knowledge is incomplete.  相似文献   

3.
The present work is associated with Bayesian finite element (FE) model updating using modal measurements based on maximizing the posterior probability instead of any sampling based approach. Such Bayesian updating framework usually employs normal distribution in updating of parameters, although normal distribution has usual statistical issues while using non-negative parameters. These issues are proposed to be dealt with incorporating lognormal distribution for non-negative parameters. Detailed formulations are carried out for model updating, uncertainty-estimation and probabilistic detection of changes/damages of structural parameters using combined normal-lognormal probability distribution in this Bayesian framework. Normal and lognormal distributions are considered for eigen-system equation and structural (mass and stiffness) parameters respectively, while these two distributions are jointly considered for likelihood function. Important advantages in FE model updating (e.g. utilization of incomplete measured modal data, non-requirement of mode-matching) are also retained in this combined normal-lognormal distribution based proposed FE model updating approach. For demonstrating the efficiency of this proposed approach, a two dimensional truss structure is considered with multiple damage cases. Satisfactory performances are observed in model updating and subsequent probabilistic estimations, however level of performances are found to be weakened with increasing levels in damage scenario (as usual). Moreover, performances of this proposed FE model updating approach are compared with the typical normal distribution based updating approach for those damage cases demonstrating quite similar level of performances. The proposed approach also demonstrates better computational efficiency (achieving higher accuracy in lesser computation time) in comparison with two prominent Markov Chain Monte Carlo (MCMC) techniques (viz. Metropolis-Hastings algorithm and Gibbs sampling).  相似文献   

4.
Predicting insurance losses is an eternal focus of actuarial science in the insurance sector. Due to the existence of complicated features such as skewness, heavy tail, and multi-modality, traditional parametric models are often inadequate to describe the distribution of losses, calling for a mature application of Bayesian methods. In this study we explore a Gaussian mixture model based on Dirichlet process priors. Using three automobile insurance datasets, we employ the probit stick-breaking method to incorporate the effect of covariates into the weight of the mixture component, improve its hierarchical structure, and propose a Bayesian nonparametric model that can identify the unique regression pattern of different samples. Moreover, an advanced updating algorithm of slice sampling is integrated to apply an improved approximation to the infinite mixture model. We compare our framework with four common regression techniques: three generalized linear models and a dependent Dirichlet process ANOVA model. The empirical results show that the proposed framework flexibly characterizes the actual loss distribution in the insurance datasets and demonstrates superior performance in the accuracy of data fitting and extrapolating predictions, thus greatly extending the application of Bayesian methods in the insurance sector.  相似文献   

5.
基于改进的Cholesky分解,研究分析了纵向数据下半参数联合均值协方差模型的贝叶斯估计和贝叶斯统计诊断,其中非参数部分采用B样条逼近.主要通过应用Gibbs抽样和Metropolis-Hastings算法相结合的混合算法获得模型中未知参数的贝叶斯估计和贝叶斯数据删除影响诊断统计量.并利用诊断统计量的大小来识别数据的异常点.模拟研究和实例分析都表明提出的贝叶斯估计和诊断方法是可行有效的.  相似文献   

6.
A finite mixture model has been used to fit the data from heterogeneous populations to many applications. An Expectation Maximization (EM) algorithm is the most popular method to estimate parameters in a finite mixture model. A Bayesian approach is another method for fitting a mixture model. However, the EM algorithm often converges to the local maximum regions, and it is sensitive to the choice of starting points. In the Bayesian approach, the Markov Chain Monte Carlo (MCMC) sometimes converges to the local mode and is difficult to move to another mode. Hence, in this paper we propose a new method to improve the limitation of EM algorithm so that the EM can estimate the parameters at the global maximum region and to develop a more effective Bayesian approach so that the MCMC chain moves from one mode to another more easily in the mixture model. Our approach is developed by using both simulated annealing (SA) and adaptive rejection metropolis sampling (ARMS). Although SA is a well-known approach for detecting distinct modes, the limitation of SA is the difficulty in choosing sequences of proper proposal distributions for a target distribution. Since ARMS uses a piecewise linear envelope function for a proposal distribution, we incorporate ARMS into an SA approach so that we can start a more proper proposal distribution and detect separate modes. As a result, we can detect the maximum region and estimate parameters for this global region. We refer to this approach as ARMS annealing. By putting together ARMS annealing with the EM algorithm and with the Bayesian approach, respectively, we have proposed two approaches: an EM-ARMS annealing algorithm and a Bayesian-ARMS annealing approach. We compare our two approaches with traditional EM algorithm alone and Bayesian approach alone using simulation, showing that our two approaches are comparable to each other but perform better than EM algorithm alone and Bayesian approach alone. Our two approaches detect the global maximum region well and estimate the parameters in this region. We demonstrate the advantage of our approaches using an example of the mixture of two Poisson regression models. This mixture model is used to analyze a survey data on the number of charitable donations.  相似文献   

7.
Abstract

This article introduces a general method for Bayesian computing in richly parameterized models, structured Markov chain Monte Carlo (SMCMC), that is based on a blocked hybrid of the Gibbs sampling and Metropolis—Hastings algorithms. SMCMC speeds algorithm convergence by using the structure that is present in the problem to suggest an appropriate Metropolis—Hastings candidate distribution. Although the approach is easiest to describe for hierarchical normal linear models, we show that its extension to both nonnormal and nonlinear cases is straightforward. After describing the method in detail we compare its performance (in terms of run time and autocorrelation in the samples) to other existing methods, including the single-site updating Gibbs sampler available in the popular BUGS software package. Our results suggest significant improvements in convergence for many problems using SMCMC, as well as broad applicability of the method, including previously intractable hierarchical nonlinear model settings.  相似文献   

8.
We develop efficient Bayesian inference for the one-factor copula model with two significant contributions over existing methodologies. First, our approach leads to straightforward inference on dependence parameters and the latent factor; only inference on the former is available under frequentist alternatives. Second, we develop a reversible jump Markov chain Monte Carlo algorithm that averages over models constructed from different bivariate copula building blocks. Our approach accommodates any combination of discrete and continuous margins. Through extensive simulations, we compare the computational and Monte Carlo efficiency of alternative proposed sampling schemes. The preferred algorithm provides reliable inference on parameters, the latent factor, and model space. The potential of the methodology is highlighted in an empirical study of 10 binary measures of socio-economic deprivation collected for 11,463 East Timorese households. The importance of conducting inference on the latent factor is motivated by constructing a poverty index using estimates of the factor. Compared to a linear Gaussian factor model, our model average improves out-of-sample fit. The relationships between the poverty index and observed variables uncovered by our approach are diverse and allow for a richer and more precise understanding of the dependence between overall deprivation and individual measures of well-being.  相似文献   

9.
A new method for predicting failures of a partially observable system is presented. System deterioration is modeled as a hidden, 3-state continuous time homogeneous Markov process. States 0 and 1, which are not observable, represent good and warning conditions, respectively. Only the failure state 2 is assumed to be observable. The system is subject to condition monitoring at equidistant, discrete time epochs. The vector observation process is stochastically related to the system state. The objective is to develop a method for optimally predicting impending system failures. Model parameters are estimated using EM algorithm and a cost-optimal Bayesian fault prediction scheme is proposed. The method is illustrated using real data obtained from spectrometric analysis of oil samples collected at regular time epochs from transmission units of heavy hauler trucks used in mining industry. A comparison with other methods is given, which illustrates effectiveness of our approach.  相似文献   

10.
Remaining useful life (RUL) estimation is regarded as one of the most central components in prognostics and health management (PHM). Accurate RUL estimation can enable failure prevention in a more controllable manner in that effective maintenance can be executed in appropriate time to correct impending faults. In this paper we consider the problem of estimating the RUL from observed degradation data for a general system. A degradation path-dependent approach for RUL estimation is presented through the combination of Bayesian updating and expectation maximization (EM) algorithm. The use of both Bayesian updating and EM algorithm to update the model parameters and RUL distribution at the time obtaining a newly observed data is a novel contribution of this paper, which makes the estimated RUL depend on the observed degradation data history. As two specific cases, a linear degradation model and an exponential-based degradation model are considered to illustrate the implementation of our presented approach. A major contribution under these two special cases is that our approach can obtain an exact and closed-form RUL distribution respectively, and the moment of the obtained RUL distribution from our presented approach exists. This contrasts sharply with the approximated results obtained in the literature for the same cases. To our knowledge, the RUL estimation approach presented in this paper for the two special cases is the only one that can provide an exact and closed-form RUL distribution utilizing the monitoring history. Finally, numerical examples for RUL estimation and a practical case study for condition-based replacement decision making with comparison to a previously reported approach are provided to substantiate the superiority of the proposed model.  相似文献   

11.

This paper presents a novel algorithm for efficient online estimation of the filter derivatives in general hidden Markov models. The algorithm, which has a linear computational complexity and very limited memory requirements, is furnished with a number of convergence results, including a central limit theorem with an asymptotic variance that can be shown to be uniformly bounded in time. Using the proposed filter derivative estimator, we design a recursive maximum likelihood algorithm updating the parameters according the gradient of the one-step predictor log-likelihood. The efficiency of this online parameter estimation scheme is illustrated in a simulation study.

  相似文献   

12.
Maximum a Posteriori Sequence Estimation Using Monte Carlo Particle Filters   总被引:1,自引:0,他引:1  
We develop methods for performing maximum a posteriori (MAP) sequence estimation in non-linear non-Gaussian dynamic models. The methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. MAP sequence estimation is then performed using a classical dynamic programming technique applied to the discretised version of the state space. In contrast with standard approaches to the problem which essentially compare only the trajectories generated directly during the filtering stage, our method efficiently computes the optimal trajectory over all combinations of the filtered states. A particular strength of the method is that MAP sequence estimation is performed sequentially in one single forwards pass through the data without the requirement of an additional backward sweep. An application to estimation of a non-linear time series model and to spectral estimation for time-varying autoregressions is described.  相似文献   

13.
Chain event graphs are graphical models that while retaining most of the structural advantages of Bayesian networks for model interrogation, propagation and learning, more naturally encode asymmetric state spaces and the order in which events happen than Bayesian networks do. In addition, the class of models that can be represented by chain event graphs for a finite set of discrete variables is a strict superset of the class that can be described by Bayesian networks. In this paper we demonstrate how with complete sampling, conjugate closed form model selection based on product Dirichlet priors is possible, and prove that suitable homogeneity assumptions characterise the product Dirichlet prior on this class of models. We demonstrate our techniques using two educational examples.  相似文献   

14.
Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.  相似文献   

15.
Finite element analysis has become an essential tool to estimate structural responses under static and dynamic loads. However, there are a lot of uncertainties in structural properties. For this reason, in many cases, the outcomes of the theoretical and experimental modal analyses do not match. Therefore, the analytical models of the structures need to be updated according to the experimental test results. The commonly used method to get parameters for model updating is experimental modal analysis which provides structural dynamic characteristic (natural frequencies, mode shapes and modal damping ratio). There are many methods available for the updating process. This study addresses an updating algorithm to modify the numerical models by using the design points for unknown structural properties. The proposed method aims to minimize the difference between the analytical and experimental natural frequencies by updating uncertain parameters for each mode and combine them to get an optimum solution. The algorithm is tested on a column and a 2D frame models. These models are investigated by taking the connection rigidity and elasticity modulus as unknown parameters. It is observed that the proposed algorithm gives better results for unknown structural properties compared to the initial values.  相似文献   

16.
This paper deals with the Bayesian inference for the parameters of the Birnbaum–Saunders distribution. We adopt the inverse-gamma priors for the shape and scale parameters because the continuous conjugate joint prior distribution does not exist and the reference prior (or independent Jeffreys’ prior) results in an improper posterior distribution. We propose an efficient sampling algorithm via the generalized ratio-of-uniforms method to compute the Bayesian estimates and the credible intervals. One appealing advantage of the proposed procedure over other sampling techniques is that it efficiently generates independent samples from the required posterior distribution. Simulation studies are conducted to investigate the behavior of the proposed method, and two real-data applications are analyzed for illustrative purposes.  相似文献   

17.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

18.
Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode some context specific independencies that cannot always be efficiently captured by other popular models, such as Bayesian Networks. Furthermore, inference can be carried out efficiently over a PDG, in time linear in the size of the model. The problem of learning PDGs from data has been studied in the literature, but only for the case of complete data. We propose an algorithm for learning PDGs in the presence of missing data. The proposed method is based on the Expectation-Maximisation principle for estimating the structure of the model as well as the parameters. We test our proposal on both artificially generated data with different rates of missing cells and real incomplete data. We also compare the PDG models learnt by our approach to the commonly used Bayesian Network (BN) model. The results indicate that the PDG model is less sensitive to the rate of missing data than BN model. Also, though the BN models usually attain higher likelihood, the PDGs are close to them also in size, which makes the learnt PDGs preferable for probabilistic inference purposes.  相似文献   

19.
In this article we consider the sequential monitoring process in normal dynamic linear models as a Bayesian sequential decision problem. We use this approach to build a general procedure that jointly analyzes the existence of outliers, level changes, variance changes, and the development of local correlations. In addition, we study the frequentist performance of this procedure and compare it with the monitoring algorithm proposed in an earlier article.  相似文献   

20.
Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model with normal base measure, Gibbs samplingalgorithms based on the Pólya urn scheme are often used to simulate posterior draws in conjugate models (essentially, linear regression models and models for binary outcomes). In the nonconjugate case, some common problems associated with existing simulation algorithms include convergence and mixing difficulties.

This article proposes an algorithm for MDP models with exponential family likelihoods and normal base measures. The algorithm proceeds by making a Laplace approximation to the likelihood function, thereby matching the proposal with that of the Gibbs sampler. The proposal is accepted or rejected via a Metropolis-Hastings step. For conjugate MDP models, the algorithm is identical to the Gibbs sampler. The performance of the technique is investigated using a Poisson regression model with semi-parametric random effects. The algorithm performs efficiently and reliably, even in problems where large-sample results do not guarantee the success of the Laplace approximation. This is demonstrated by a simulation study where most of the count data consist of small numbers. The technique is associated with substantial benefits relative to existing methods, both in terms of convergence properties and computational cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号