首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
M. I. Nawas  C. F. Poole 《Chromatographia》2004,60(11-12):663-672
The solvation parameter model and response surface methodology are evaluated for the prediction of retention in temperature-programmed gas chromatography. A large and varied group of compounds were separated at a constant flow rate on three columns of different selectivity (DB-1701, DB-210 and EC-Wax) with initial temperature in the range 60–120 °C and program rates of 1–15 °C min?1. The solvation parameter model provides an acceptable fit to the experimental retention factors independent of column identity, initial temperature and program rate. The system coefficients of the solvation parameter model are shown to fit a second order program rate model of the form system coefficient = ao + a1 X + a2 X 2 where X is the program rate (°C min?1) and ao, a1 and a2 are fitting coefficients with no physical significance. Response surface methodology was used to derive empirical models to predict system coefficients with program rate and initial temperature as variables. These models explain the experimental data quite well but are local models that depend on the average properties of the solutes used for their derivation. Since they dependent on solute identity, these models are unsuitable for the general prediction of retention from structure, but may prove useful for estimating retention associated with variation in experimental variables for a defined group of compounds.  相似文献   

4.
The solvation parameter model is used to characterize the separation characteristics of two application-specific open-tubular columns (Rtx-Volatiles and Rtx-VGC) and a general purpose column for the separation of volatile organic compounds (DB-WAXetr) at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and retention factor correlation plots are then used to determine selectivity differences between the above columns and their closest neighbors in a large database of system constants and retention factors for forty-four open-tubular columns. The Rtx-Volatiles column is shown to have separation characteristics predicted for a poly(dimethyldiphenylsiloxane) stationary phase containing about 16% diphenylsiloxane monomer. The Rtx-VGC column has separation properties similar to the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 14% cyanopropylphenylsiloxane monomer DB-1701 for non-polar and dipolar/polarizable compounds but significantly different characteristics for the separation of hydrogen-bond acids. For all practical purposes the DB-WAXetr column is shown to be selectivity equivalent to poly(ethylene glycol) columns prepared using different chemistries for bonding and immobilizing the stationary phase. Principal component analysis and cluster analysis are then used to classify the system constants for the above columns and a sub-database of eleven open-tubular columns (DB-1, HP-5, DB-VRX, Rtx-20, DB-35, Rtx-50, Rtx-65, DB-1301, DB-1701, DB-200, and DB-624) commonly used for the separation of volatile organic compounds. A rationale basis for column selection based on differences in intermolecular interactions is presented as an aid to method development for the separation of volatile organic compounds.  相似文献   

5.
The solvation parameter model is used to characterize the retention properties of five open-tubular column stationary phases (ZB-5 ms, DB-5 ms, DB-XLB, DB-17 ms, and DB-35 ms) based on silarylene-siloxane copolymer chemistries at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and regression models for varied compounds are used to establish the selectivity equivalence of the silarylene-siloxane copolymer stationary phases and to compare their separation characteristics with poly(dimethyldiphenylsiloxane) stationary phases containing a nominally similar concentration of phenyl groups. These studies demonstrate that ZB-5 ms and DB-5 ms are selectivity equivalent. DB-XLB is significantly more dipolar and polarizable than DB-5 ms. In general terms, the silarylenesiloxane copolymer stationary phases are slightly less cohesive and more dipolar and polarizable with similar hydrogen-bond basicity to the poly(dimethyldiphenylsiloxane) stationary phases they were designed to replace. None of the silarylenesiloxane copolymer or poly(dimethyldiphenylsiloxane) stationary phases are hydrogen-bond acidic. Selectivity differences between the two types of stationary phase are temperature dependent and tend to be smaller at higher temperatures within the temperature range studied. Consequently, selectivity differences cannot be globalized without reference to the temperature for the comparison.  相似文献   

6.
The solvation parameter model is used to study the influence of temperature and composition on the selectivity of nine poly(siloxane) and two poly(ethylene glycol) stationary phase chemistries for open-tubular column gas chromatography. A database of system constants for the temperature range 60-140 degrees C was constructed from literature values with additional results determined for HP-50+, DB-210, DB-1701, DB-225 and SP-2340 columns. The general contribution of monomer composition (methyl, phenyl, cyanopropyl, and trifluoropropyl substituents) on the capacity of poly(siloxane) stationary phases for dispersion, electron lone pair, dipole-type and hydrogen-bond interactions is described. The selectivity coverage of the open-tubular column stationary phases is compared with a larger database for packed column stationary phases at a reference temperature of 120 degrees C. The open-tubular column stationary phases provide reasonable coverage of the range of dipole-type and hydrogen-bond base interactions for non-ionic packed column stationary phases. Deficiencies are noted in the coverage of electron lone pair interactions. None of the open-tubular column stationary phases are hydrogen-bond acids. The system constants are shown to change approximately linearly with temperature over the range 60-140 degrees C. The intercepts and slopes of these plots are used to discuss the influence of temperature on stationary phase selectivity.  相似文献   

7.
The retention times of selected compounds in temperature programmed gas chromatography were predicted using a two-parameter model, on the basis of thermodynamic data obtained from isothermal runs on seven capillary columns, primarily substituted with 5% diphenylsiloxane. The scope for using thermodynamic data obtained from isothermal runs on one column to optimize separation on a different column or a different instrument setup was investigated. Additionally, the predictive utility of thermodynamic data obtained using a DB-5 column that had been in use for three years was compared to that of a new column of the same model. It was found that satisfactory separation could be achieved on one capillary column or instrument setup on the basis of thermodynamic data obtained using a different column or instrument set-up.  相似文献   

8.
The solvation parameter model was applied in the development of a method for the analysis of residual solvents in pharmaceuticals. The interactions between organic solvents and six different stationary phases were studied using gas chromatography. The retention times of the organic solvents on these columns could be predicted under isothermal or temperature-programmed conditions using the established solvation parameter models. The predicted retention times helped in column selection and in optimizing chromatographic conditions during method development, and will form the basis for the development of a computer-aided method.  相似文献   

9.
10.
The influence of the mobile phase composition and column temperature on the chromatographic separation of five buckminsterfullerenes (C60, C70, C76, C78, C84) on a stationary phase based on silica gel with chemically bonded humic acid (Bonded humic acid column (BHAC)) was studied. The retention behavior of the fullerenes was measured under isocratic conditions with different mobile phase compositions, ranging from 0.05-0.70 (v/v) of toluene in cyclohexane. The column temperature was analysed in the range 35-75 °C. The retention factors of the five fullerenes do not depend linearly on the toluene fraction but follow a quadratic relationship. The best chromatographic conditions for baseline separation of the five fullerenes were selected. The retention of the fullerenes on the HA stationary phase was strongly affected by temperature. Positive values of thermodynamic parameters (changes of enthalpy and entropy) were due to the abnormal solubility behaviour of fullerenes in toluene in the temperature range 35-75 °C. The information obtained in this work makes this BHAC very simple to prepare and low cost, useful for fullerene research applications.  相似文献   

11.
12.
The solvation parameter model is used to characterize the retention properties of the bis(cyanopropylsiloxane)-co-methylsilarylene, HP-88, and poly(siloxane), Rtx-440, stationary phases over the temperature range 60-140 degrees C. HP-88 is among the most cohesive, dipolar/polarizable and hydrogen-bond basic of stationary phases for open-tubular column gas chromatography. It has no hydrogen-bond acidity or capacity for electron lone pair interactions. It exhibits similar selectivity to the poly(cyanopropylsiloxane) stationary phase SP-2340. Rtx-440 is a low-polarity, low-cohesion stationary phase with a moderate capacity for dipolar/polarizable and hydrogen-bond base interactions. It has no hydrogen-bond acidity and possesses weak electron lone pair interactions. It has unique selectivity when compared against a system constants database for 28 common stationary phase compositions. Cluster analysis indicated that the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 6% cyanopropylphenylsiloxane monomer, DB-1301, the poly(dimethyldiphenylsiloxane) stationary phase containing 20% diphenylsiloxane monomer, Rtx-20, the poly(siloxane) stationary phase of unknown composition, DB-624, and DX-1 [a mixture of poly(dimethylsiloxane) and poly(ethylene glycol) 9:1] are the closest selectivity matches in the database. The selectivity of DB-1301 and Rtx-440 are very similar for solutes with weak hydrogen-bond acidity allowing one stationary phase to be substituted for the other with likely success. For strong hydrogen-bond acids, such as phenols, DB-1301 and Rtx-440 exhibit different selectivity.  相似文献   

13.
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature-gradient measurements are required. Under these conditions, retention times can be predicted with a maximal relative error of 4.3% (average relative error: 2.2%). As an example, the systematic method development for an isothermal as well as a temperature gradient separation of selected sulfonamides by means of the adapted LES model is demonstrated using a pure water mobile phase. Both methods are compared and it is shown that the temperature-gradient separation provides some advantages over the isothermal separation in terms of limits of detection and analysis time.  相似文献   

14.
Conversion of Kováts retention indices on a given stationary phase into the thermodynamic parameters of compounds on a given column leads to a simplified method for retention simulation in isothermal, linear, and multi-ramp temperature programmed capillary gas chromatography. The influence of numerical methods used in the computation, the temperature coefficient of Kováts indices, and the experimental factors such as isothermal temperatures selected in the measurement of n-alkanes, column characterization and sample overloading, on the reproducibility and accuracy of simulation were discussed and examined. When the column used is properly characterized, the error between the simulated values and the experimental data is within ± 0.5 index unit or less than ± 1% of retention time.  相似文献   

15.
The solvation parameter model is used to characterize the selectivity of DB-608 and DB-624 open-tubular columns at five equally spaced temperatures over the range 60 to 140 degrees C. The system constants for the DB-608 and DB-624 columns were used as selectivity parameters to search a database of open-tubular columns to identify columns with similar selectivity. The search was refined using the absolute deviation of the system constants and retention factor regression models for varied compounds. For method development it is shown that the selectivity of the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 6% cyanopropylphenylsiloxane monomer (DB-1301) is equivalent to DB-624 and the poly(dimethyldiphenylsiloxane) stationary phases containing either 50 or 65% diphenylsiloxane monomer (Rtx-50 and Rtx-65) are suitable choices for DB-608.  相似文献   

16.
A method has been developed for peak identification of PCBs in GC with ECD detection under different temperature programs and isothermal conditions on two commonly used columns (DB-5 and DB-1701). This was achieved by means of accurate calibration of retention times based on the concept of the relative retention index P (i) and retention times of the selected PCB internal standards. The P (i) was calculated from the predicted retention times with the database of the retention parameters (A, B) and the migration equations. Through comparison of the calibrated and experimental retention times of PCBs in technical samples, it was shown that the developed method was effective for correct PCB comprehensive, quantitative, congener-specific (CQCS) analyses.  相似文献   

17.
Summary The gas chromatography of all chlorinated methyl acetates, methyl propanoates and methyl mono- and dichlorobutanoates has been studied on Carbowax 20M and SE-30 glass capillary columns under various running conditions. The order of elution on a non-polar column was largely determined by the boiling point of esters, whereas on a polar column it was much influenced by the structure of compounds. Complete separation of the combined mixture of all 27 compounds could not be achieved, however, methyl 3,3-dichlorobutanoate was the only ester overlapped on both columns in spite of the various column temperatures used. The best separation of the mixture was on Carbowax 20M with a temperature program from 50°C at 8°C/min, isothermal running conditions leading either to poor separation of volatile components or long analysis time and broad peaks of higher chlorinated esters. The relative retention times for compounds at the various column temperatures are given and the retention order on a polar and on a non-polar column discussed.  相似文献   

18.
Thermodynamics of the interaction between Ni2+ and human growth hormone (hGH) were determined at 27 °C in Nail solution by isothermal titration calorimetry. A new method to predict protein penetration and the effect of metal ions on the stability of proteins is introduced. The new solvation model was used to reproduce the enthalpies of Ni2+-hGH interaction over the whole range of Ni2+ concentrations. The solvation parameters recovered from the new equation, attributed to the structural change of hGH and its biological activity.  相似文献   

19.
The effective plate height, heff, is considered to be a better measure of the efficiency of capillary column than the conventional plate height, h, in isothermal conditions. By using experimental data of 1-alcohols and n-alkanes, 2-ketones and 1-alkenes measured on capillary columns coated with non-polar stationary phases in isothermal and isobaric conditions, the peak width at half height is predicted with a function similar at that of adjusted retention time. The results obtained under different analytical conditions as the head pressure and the temperature of the column confirm the validity of the model, whose parameters are linear, and as a consequence a unique solution is obtained.  相似文献   

20.
Direct conversion of isothermal to temperature programmed indices is not possible. In this work it is shown that linear temperature programmed retention indices can only be calculated from isothermal retention data if the temperature dependence of both the distribution coefficients and the column dead time are taken into account. Procedures are described which allow calculation of retention temperatures and from these, accurate programmed retention indices. Within certain limits the initial oven temperature and programming rate can be chosen freely. The prerequisite for this calculation is the availability of reliable isothermal retention data (retention times, retention factors, relative retention times, or retention indices) at two different temperatures for one column. The use of compiled isothermal retention indices at two different temperatures for the calculation of retention temperatures and thus temperature programmed indices is demonstrated. For the column for which programmed retention indices have to be determined, the isothermal retention times of the n-alkanes and the column dead time as a function of temperature have to be known in addition to the compiled data for a given stationary phase. Once the programmed retention indices have been calculated for a given column the concept allows the calculation of temperature programmed indices for columns with different specifications. The characteristics which can be varied are: column length, column inner diameter, phase-ratio, initial oven temperature, and programming rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号