首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azlactones (also known as oxazolones) are heterocycles usually employed in the stereoselective synthesis of α,α‐amino acids, heterocycles and natural products. The versatility of the azlactone scaffold arises from the numerous reactive sites, allowing its application in a diversity of transformations. This review aims to cover classical and recent applications of oxazolones, especially those involving stereoselective processes. After a short introduction on their structures and intrinsic reactivities, dynamic kinetic resolution (DKR) processes as well as reactions involving stereoselective formation of a new σ C?C bond, such as alkylation/allylation/arylation, aldol, ene, Michael and Mannich reactions will be exposed. Additionally, cycloadditions, Steglich rearrangement and sulfenylation reactions will also be discussed. Recent developments of the well‐known Erlenmeyer azlactones will be described. For the most examples, the proposed mechanism, activation modes and/or key reaction intermediates will be exposed to rationalize both the final product and the observed stereochemistry. Finally, this review gives an overview of the synthetic utility of oxazolones.  相似文献   

2.
It is shown that racemic oxazolones are excellent reagents for the synthesis of chiral quaternary amino acids and its derivatives by the diastereo- and enantioselective nucleophilic addition to alpha,beta-unsaturated aldehydes catalyzed by diarylprolinol silyl ethers. The scope of this new organocatalytic reaction is demonstrated for different oxazolones having aromatic and alkyl groups at the reactive carbon atom and different aromatic and aliphatic substituted alpha,beta-unsaturated aldehydes, for which the stereoselective reaction proceeds with good yield, moderate to good to very high diastereoselectivity, and very high enantioselectivity. The potential of the reaction is shown for the synthesis of optically active alpha,alpha-disubstituted alpha-amino acids, alpha-quaternary proline derivatives, amino alcohols, lactams, and tetrahydropyranes. Furthermore, we have calculated by DFT-methods the transition-state structures that account for both the diastereo- and enantioselectivity observed for the addition of oxazolones to the alpha,beta-unsaturated aldehydes. For one class of compounds, the stereoselectivity is controlled by a hydrogen-bonding interaction of the enolate-form of the oxazolone with an ortho-hydroxy-phenyl substituent of the alpha,beta-unsaturated aldehyde, whereas the benzhydryl-protecting group in the oxazolone determines the diastereo- and enantioselectivity in a more general manner for both aromatic and aliphatic alpha,beta-unsaturated aldehydes.  相似文献   

3.
α,α‐Disubstituted α‐amino acids are central to biotechnological and biomedical chemical processes for their own sake and as substructures of biologically active molecules for diverse biomedical applications. Structurally, these compounds contain a quaternary stereocenter, which is particularly challenging for stereoselective synthesis. The pyridoxal‐5′‐phosphate (PLP)‐dependent L ‐serine hydroxymethyltransferase from Streptococcus thermophilus (SHMTSth; EC 2.1.2.1) was engineered to achieve the stereoselective synthesis of a broad structural variety of α,α‐dialkyl‐α‐amino acids. This was accomplished by the formation of quaternary stereocenters through aldol addition of the amino acids D ‐Ala and D ‐Ser to a wide acceptor scope catalyzed by the minimalist SHMTSth Y55T variant overcoming the limitation of the native enzyme for Gly. The SHMTSth Y55T variant tolerates aromatic and aliphatic aldehydes as well as hydroxy‐ and nitrogen‐containing aldehydes as acceptors.  相似文献   

4.
Non-proteinogenic amino acids have attracted tremendous interest for their essential applications in the realm of biology and chemistry. Recently, rising C–H functionalization has been considered an alternative powerful method for the direct synthesis of non-proteinogenic amino acids. Meanwhile, photochemistry has become popular for its predominant advantages of mild conditions and conservation of energy. Therefore, C–H functionalization and photochemistry have been merged to synthesize diverse non-proteinogenic amino acids in a mild and environmentally friendly way. In this review, the recent developments in the photo-mediated C–H functionalization of proteinogenic amino acids derivatives for the rapid synthesis of versatile non-proteinogenic amino acids are presented. Moreover, postulated mechanisms are also described wherever needed.  相似文献   

5.
A new, easy, and highly enantioselective method for the synthesis of quaternary α‐alkyl‐α‐amino acids based on organocatalysis is reported. The addition of oxazolones to 1,1‐bis(phenylsulfonyl)ethylene is efficiently catalyzed by simple chiral bases or thioureas. The reaction affords α,α‐disubstituted α‐amino acid derivatives with complete C4 regioselectivity and with excellent yields and enantioselectivities. This methodology is complementary to previously reported enantioselective approaches to quaternary α‐amino acids and allows the synthesis of α‐phenyl‐α‐alkyl‐α‐amino acids and α‐tert‐butyl‐α‐alkyl‐α‐amino acids. It has distinct advantages in terms of operational simplicity, enviromentally friendly conditions, and suitability for large‐scale reactions.  相似文献   

6.
The organocatalytic properties of unnatural α‐amino acids are reviewed. Post‐translational derivatives of natural α‐amino acids include 4‐hydroxy‐l ‐proline and 4‐amino‐l ‐proline scaffolds, and also proline homologues. The activity of synthetic unnatural α‐amino acid‐based organocatalysts, such as β‐alkyl alanines, alanine‐based phosphines, and tert‐leucine derivatives, are reviewed herein. The organocatalytic properties of unnatural monocyclic, bicyclic, and tricyclic proline derivatives are also reviewed. Several families of these organocatalysts permit the efficient and stereoselective synthesis of complex natural products. Most of the reviewed organocatalysts accelerate the reported reactions through covalent interactions that raise the HOMO (enamine intermediates) or lower the LUMO (iminium intermediates).  相似文献   

7.
《Tetrahedron》1988,44(17):5605-5614
A general method for the stereoselective conversion of homoallylic alcohols to erythro- or threo-β-hydroxy-α-amino acids is described. The key step is the stereoselective mercuric ion-initiated cyclofunctionalization of acylaminomethyl ether derivatives of the homoallylic alcohols (3 → 8). The stereochemistry of the products obtained from the cyclofunctionalization is controlled by the choice of reaction conditions. Reaction under conditions of kinetic control leads to predominant formation of cis 4,6-disubstituted tetrahydro-1,3-oxazines, while reaction under conditions which allow for equilibration of the organomercurial intermediates results in the formation of the trans stereoisomer with very high stereoselectivity. Oxidative demercuration and oxidation of the resulting alcohol produces a protected form of the title amino acids (8 → 9 → 10). Cleavage of the tetrahydrooxazine ring with hydrobromic acid then produces the amino acid products asγ-butyrolactone hydrobromides (11 and 12). This general method thus allows for stereoselective synthesis of either diastereomer of the amino acid product starting with a single homoallylic alcohol.  相似文献   

8.
The most recent papers describing the stereoselective synthesis of cyclic quaternary α-amino acids are collected in this review. The diverse synthetic approaches are classified according to the size of the ring and taking into account the bond that is formed to complete the quaternary skeleton.  相似文献   

9.
To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started looking for new concepts to supplement traditional approaches. In one such approach, the expertise gained over the years in the area of organic synthesis and the rational drug-design concepts are combined together to create "nature-like" and yet unnatural organic molecules that are expected to provide leads in discovering new molecules. Emulating the basic principles followed by nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl groups provide an excellent opportunity for organic chemists to create structural diversities akin to nature's molecular arsenal. Recent advances in the area of combinatorial chemistry give unprecedented technological support for rapid compilations of sugar amino acid-based libraries exploiting the diversities of carbohydrate molecules and well-developed solid-phase peptide synthesis methods. This review chronicles the development of sugar amino acids as a novel class of peptidomimetic building blocks and their applications in generating desired secondary structures in peptides as well as in creating mimics of natural biopolymers.  相似文献   

10.
An easy and simple synthetic approach to optically active alpha,alpha-quaternary alpha-amino acids using asymmetric organocatalysis is presented. The addition of oxazolones to nitroalkenes catalyzed by thiourea cinchona derivatives provides the corresponding alpha,alpha-quaternary alpha-amino acid derivatives with good yields, excellent diastereoselectivities (up to 98 % dr), and from moderate to good enantioselectivities (up to 92 % ee). The reaction can be performed on a large scale. The optically active oxazolone-nitroalkene addition products can be opened in a one-pot reaction to the corresponding ester-amide derivatives. Additional transformations are also presented, such as the synthesis of amino esters, amino acids, and transformation into 3,4-disubstituted pyrrolidin-2-ones.  相似文献   

11.
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.  相似文献   

12.
The multi-component condensation of organozirconocene, aldimine and zinc carbenoid was applied to the stereoselective synthesis of cyclopropane amino acid derivatives. These compounds served as scaffolds for the preparation of a 46-member library. The C- and N-termini of the cyclopropane amino acid derivatives were diversified by condensations with ten amines and ten acylating agents, respectively. To improve yields and accelerate library synthesis, most products were prepared under microwave irradiation and purified by polymer-bound scavengers and SPE methodology. All compounds were analyzed by LC-MS and a representative selection was fully characterized.  相似文献   

13.
Surfactant use throughout mankind is extensive, from their initial applications as detergents extending to use in medicine, lubricant, cosmetics and even enhanced oil recovery. However, the image of surfactant use has in the past been tarnished by issues with low biodegradability and their synthesis from nonsustainable resources. Amino acid–based surfactants are a class of surfactants derived from a hydrophobe source coupled with simple amino acids, mixed amino acids from synthesis or from protein hydrolysates, and as such can be derived solely from renewable resources. There are several pathways for their synthesis and this allows for extensive structural diversity in this class of surfactants, resulting in widespread tuneable functionality in their physiochemical properties. This review includes the details of most of the available routes of synthesis for amino acid surfactants (AASs) and the impact of the diverse routes on their final physiochemical properties, including solubility, dispersability, toxicity and biodegradability. The diversity offered by the structural variation in AASs offers many exciting commercial opportunities for this ever-growing class of surfactants. It also includes a discussion on current and future potential uses of AASs.  相似文献   

14.
Practical and diastereospecific three-component 1,3-dipolar cycloaddition reactions of methyleneindolinones, isatins and diverse primary amino acids have been well established. A range of pyrrolidinyldispirooxindole scaffolds with wide structural diversity and complexity were obtained facilely in excellent yields under mild conditions, which hold promising applications in their further pharmacological studies.  相似文献   

15.
The first general approach toward the asymmetric synthesis of 4-alkyl-4-carboxy-2-azetidinones derived from amino acids is described. The stereoselective construction of the beta-lactam ring was achieved through base-mediated intramolecular cyclization of the corresponding N(alpha)-chloroacetyl derivatives bearing (+)- or (-)-10-(N,N-dicyclohexylsulfamoyl)isoborneol as chiral auxiliary (ee up to 82%).  相似文献   

16.
The stereoselective synthesis of amino acids is of great importance for the construction of optically active natural products and pharmaceuticals. Apart from enzymes, a broad repertoire of chiral reagents, auxiliaries, and catalysts can be used for the formation of amino acids. Asymmetric reactions using catalytic amounts of chiral molecules provide efficient methods for the generation of optically active proteinogenic and nonproteinogenic amino acids. This minireview collects recent work on catalytic asymmetric synthesis of alpha- and beta-amino acids.  相似文献   

17.
Herein, we report a diversity‐oriented‐synthesis (DOS) approach for the synthesis of biologically relevant molecular scaffolds. Our methodology enables the facile synthesis of fused N‐heterocycles, spirooxoindolones, tetrahydroquinolines, and fused N‐heterocycles. The two‐step sequence starts with a chiral‐bicyclic‐lactam‐directed enolate‐addition/substitution step. This step is followed by a ring‐closure onto the built‐in scaffold electrophile, thereby leading to stereoselective carbocycle‐ and spirocycle‐formation. We used in silico tools to calibrate our compounds with respect to chemical diversity and selected drug‐like properties. We evaluated the biological significance of our scaffolds by screening them in two cancer cell‐lines. In summary, our DOS methodology affords new, diverse scaffolds, thereby resulting in compounds that may have significance in medicinal chemistry.  相似文献   

18.
Oxazolone derivative 3a was utilized as a versatile precursor for the construction of new heterocyclic scaffolds containing imidazole, oxazine, triazine, and triazole rings (compounds 20 , 21 , 23 , and 24 , respectively). Furthermore, 4‐aminohippuric acid ( 2b ) was used in the synthesis of various new oxazolone derivatives ( 13 – 19 ) by utilizing of its amino group in several transformations followed by heterocyclization of these compounds with aldehyde 1 via classical Erlenmeyer condensation method to give the targeted oxazolones. On evaluation of these compounds as antioxidant and antibacterial agents, compounds 20 and 24 exhibited a good antioxidant activity, while compounds 20 , 23 , and 24 exhibited a good antibacterial activity against Escherichia coli and Staphylococcus aureus.  相似文献   

19.
The synthesis of peptide-furostane conjugates from natural steroidal sapogenins is reported. The approach comprises the introduction of α-oriented amino groups into spirostanic sapogenins followed by reductive opening of the spiroketal chain, thus producing diamino-furostanic scaffolds suitable for further functionalization. Solid and solution-phase coupling processes were utilized for the incorporation of various α-amino acids and peptides into the furostanic skeletons. The attachment position depends on the steroidal sapogenin originally used, i.e., diosgenin or hecogenin. The resulting furostanic skeletons feature a trans A/B-ring fusion and hold the peptides in axial disposition. This characteristic ensures a preorganized alignment of the peptidic motifs, an important structural feature for future applications in molecular recognition and catalysis. A macrocyclic tripeptide-furostane conjugate was also produced by a combination of peptide coupling, Staudinger ligation, and a cyclization protocol. This work constitutes the first report on the use of furostanic sapogenins as scaffolds for positioning natural amino acids and (cyclo)peptides.  相似文献   

20.
An efficient and original stereocontrolled transannular rearrangement starting from activated 2,5-diketopiperazines has been developed, an opportunity for the medicinal chemistry field, which requests access to novel biological scaffolds. This powerful ring contraction, which can be related to a stereoselective aza-version of the Chan rearrangement, allows for example the one-step synthesis of various tetramic acids, access to 2-disubstituted statins, or the synthesis of relevant lactam-constrained dipeptide mimetics using a TRAL-RCM sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号