首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
基于区间分析的工程结构不确定性研究现状与展望   总被引:15,自引:0,他引:15  
苏静波  邵国建 《力学进展》2005,35(3):338-344
随机分析方法、模糊分析方法是已经广泛使用的工程结构不确定性分析方法, 近年来区间分析方法逐渐为人们所熟知并成为是一种新的工程结构不确定性分析方法,它主要用来研究具有区间特性的工程结构. 区间分析方法在统计信息不足以描述不确定参数的概率分布或隶属函数、工程单位仅提供不确定参数的区间范围而想获得结构响应的区间范围时就发挥了其优点. 综述了区间分析方法及其在工程结构不确定性分析中的应用状况, 将基于区间分析的工程结构不确定性问题研究归结为以下4个方面: 不确定性结构系统的区间有限元分析; 基于区间的非概率可靠性分析; 工程结构区间反演分析; 基于区间参数的结构优化设计. 分析评价了国内外在这几个方面的研究成果及其最新进展, 同时指出目前研究中存在的问题和研究的方向.   相似文献   

2.
Summary  The main goal of the paper is to present theoretical aspects and the finite element method (FEM) implementation of the sensitivity analysis in homogenization of composite materials with linear elastic components, using effective modules approach. The deterministic sensitivity analysis of effective material properties is presented in a general form for an n-components periodic composite, and is illustrated by the examples of 1D as well as of 2D heterogeneous structures. The results of the sensitivity analysis presented in the paper confirm the usefulness of the homogenization method in computational analysis of composite materials the method may be applied to computational optimization of engineering composites, to the shape-sensitivity studies and, after some probabilistic extensions, to stochastic sensitivity analysis of random composites. Received 10 November 2000; accepted for publication 24 April 2001  相似文献   

3.
A method of combining moiré interferometry and the finite-element method to effect localized stress analysis is presented. The displacement data from local regions of interest in the optical experiment are used as boundary conditions for the finite-element stress analysis. The stability of the method is examined with data from simple numerical models one of which corresponded to the stress analysis of a pin-loaded plate with friction. These studies show that the method requires the sensivity of moiré interferometry for successful implementation, i.e., displacement data accuracy within 0.1 μm or 4 μin. This localized hybrid method of stress analysis provides a powerful and efficient method for the reduction of experimental data.  相似文献   

4.
Carbon dioxide injected into saline aquifers dissolves in the resident brines increasing their density, which might lead to convective mixing. Understanding the factors that drive convection in aquifers is important for assessing geological CO2 storage sites. A hydrodynamic stability analysis is performed for non-linear, transient concentration fields in a saturated, homogenous, porous medium under various boundary conditions. The onset of convection is predicted using linear stability analysis based on the amplification of the initial perturbations. The difficulty with such stability analysis is the choice of the initial conditions used to define the imposed perturbations. We use different noises to find the fastest growing noise as initial conditions for the stability analysis. The stability equations are solved using a Galerkin technique. The resulting coupled ordinary differential equations are integrated numerically using a fourth-order Runge–Kutta method. The upper and lower bounds of convection instabilities are obtained. We find that at high Rayleigh numbers, based on the fastest growing noise for all boundary conditions, both the instability time and the initial wavelength of the convective instabilities are independent of the porous layer thickness. The current analysis provides approximations that help in screening suitable candidates for homogenous geological CO2 sequestration sites.  相似文献   

5.
Theoretical analysis is presented to quantify the viscous coupling effect in two-phase flow through porous media. The analysis is based on the principle of potential difference equations as well as on the interfacial contact area and partition concept. The analysis shows that viscous coupling effect is negligible throughout the normalized saturation range. The expression, Xϕ 2, was developed for the quantification of the parameter that controls the amount of viscous coupling, where X was theoretically found to have a maximum value of 2.  相似文献   

6.
To investigate the aeroelastic stability of a folding wing effectively, a parametric aeroelastic analysis approach is proposed. First, the fixed interface component modal synthesis is used to derive the structural dynamic equation for a folding wing, in which the elastic connection is considered. The unsteady aerodynamic model is established by the doublet lattice method (DLM), and the aeroelastic model is achieved from integration of the DLM with the component modal analysis. The generalized aerodynamic influence coefficient matrix is established by modes kept and constraint modes of each component. The aeroelastic stability of a folding wing is investigated based on the Gram matrix in control theory. The effectiveness of the proposed method is verified via comparison with traditional flutter eigenvalue analysis for both extended and folded configurations. The proposed method identifies coupled modes and improves computational efficiency when compared to classical aeroelastic stability analysis methods, such as the pk method.  相似文献   

7.
This paper introduces an extended concept of limit analysis to deal with the dynamic equilibrium condition considering the inertia and strain-rate effect for dynamic behavior of structures. The conventional limit analysis method has been applied to only static collapse analysis of structures without consideration of dynamic effects in the structural behavior. A dynamic formulation for the limit analysis has been derived for incremental analysis dealing with time integration, strain and stress evaluation, strain hardening, strain-rate hardening and thermal softening. The time dependent term in the governing equation is integrated with the WBZ-α method. The dynamic material behavior is described by the Johnson–Cook model in order to consider strain-rate hardening and thermal softening as well as strain hardening. Simulations have been carried out for impact analysis of a Taylor bar and an S-rail and their numerical results are compared with elasto-plastic explicit analysis results by LS-DYNA3D. Comparison demonstrates that the dynamic finite element limit analysis can predict the crashworthiness of structural members effectively with less effort and computing time than the commercial code compared. The crashworthiness of a structure with the rate-dependent constitutive model is also compared to that with the quasi-static constitutive relation in order to investigate the dynamic effect on deformation of structures.  相似文献   

8.
The generalized energy method is developed to study the nonlinear stability analysis for a magnetized ferrofluid layer heated from below saturating a porous medium, in the stress-free boundary case. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body force. By introducing a suitable generalized energy functional, we perform a nonlinear energy stability (conditional) analysis. It is found that the nonlinear critical stability magnetic thermal Rayleigh number does not coincide with that of linear instability analysis, and thus indicates that the subcritical instabilities are possible. However, it is noted that, in case of non-ferrofluid, global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effect of magnetic parameter, M 3, and medium permeability, Da, on subcritical instability region has also been analyzed. It is shown that with the increase of magnetic parameter (M 3) and Darcy number (Da), the subcritical instability region between the two theories decreases quickly. We also demonstrate coupling between the buoyancy and magnetic forces in nonlinear energy stability analysis as well as in linear instability analysis.  相似文献   

9.
The steady boundary-layer flow near the stagnation point on an impermeable vertical surface with slip that is embedded in a fluid-saturated porous medium is investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary differential equations. This system is then solved numerically. The features of the flow and the heat transfer characteristics for different values of the governing parameters, namely, the Darcy–Brinkman, Γ, mixed convection, λ, and slip, γ, parameters, are analysed and discussed in detail for the cases of assisting and opposing flows. It is found that dual solutions exist for assisting flows, as well as those usually reported in the literature for opposing flows. A stability analysis of the steady flow solutions encountered for different values of the mixed convection parameter λ is performed using a linear temporal stability analysis. This analysis reveals that for γ  =  0 (slip absent) and Γ  =  1 the lower solution branch is unstable while the upper solution branch is stable.  相似文献   

10.
This study investigated the two-dimensional flow past two tandem circular or square cylinders at Re = 100 and D / d = 4–10, where D is the center-to-center distance and d is the cylinder diameter. Numerical simulation was performed to comparably study the effect of cylinder geometry and spacing on the aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics and flow unsteadiness. We also provided the first global linear stability analysis and sensitivity analysis on the physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of the cylinder geometry and spacing on the characteristic quantities. Numerical results reveal that there is wake flow transition for both geometries depending on the spacing. The characteristic quantities, including the time-averaged and fluctuating streamwise velocity and pressure coefficient, are quite similar to that of the single cylinder case for the upstream cylinder, while an entirely different variation pattern is observed for the downstream cylinder. The global linear stability analysis shows that the spatial structure of perturbation is mainly observed in the wake of the downstream cylinder for small spacing, while moves upstream with reduced size and is also observed after the upstream cylinder for large spacing. The sensitivity analysis reflects that the temporal growth rate of perturbation is the most sensitive to the near-wake flow of downstream cylinder for small spacing and upstream cylinder for large spacing.  相似文献   

11.
刘钧  张炜  陈耕耘 《力学学报》1995,3(2):54-59
本文在非线性有限单元法的基础上,引进八节点的狭长单元来描述边坡中的滑动面,同时对于有限元单元网格可调节点坐标进行变更形成新的网格,于是利用原有基本网格架,通过多次有限元分析求出边坡中可能滑动面的稳定系数曲线K=f(α),并进而确定最危险的滑动面,在此基础上开展一系列稳定分析工作。  相似文献   

12.
The theory of nearly-extensional flow is developed to study the stability of extensional flow. For such flows a simple constitutive equation is derived for slightly disturbed extensional flow when a ‘short memory’ assumption is admissible.Following Minoshima and White and utilizing the constitutive equation obtained, a stability analysis for non-Newtonian fluid sheets is presented. The theoretical analysis presented is specific for an integral consitutive equation. The influence of the fluid elasticity on the stability behaviour is investigated. It is shown that the fluid sheet stability depends upon λk, where λ is the relaxation time and K is the elongation rate.  相似文献   

13.
The purpose of this paper is to focus on the experimentally obtained results of impinging jet applications by the help of two different analysis methods. Circular round pipes (D = 7.9, 10.8, 13.8 and 23.1 mm) have been used as the impinging jets. The heat transfer is calculated with Nusselt number (Nu). The variable parameters are the dimensionless jet-to-impingement plate distance (z/D), Reynolds number (Re) and dimensionless temperature measurement points on the heated surface (x/L, y/L). Some important analysis methods such as artificial neural network (ANN), statistical regression, and uncertainty analysis are applied to the obtained data. It is shown that the ANN application is not simply a classification analysis; it is actually an application of the convergence of functions. As a result, by considering random data, 4.57% convergence level is obtained regarding the pipe diameter. The software STATISTICA 5.0 is used to estimate new empirical correlations nonlinearly. The smallest regression coefficient for the correlations is 0.87, while the highest value is 0.99. The result of the uncertainty analyses showed that the total uncertainties are in the agreeable range; 8% for Nu, and 2.89% for Re. Dr. Nevin Celik is a Post Doctoral Fellowship in University of Minnesota since August 2007.  相似文献   

14.
The paper presents an efficient methodology for the analysis of large-scale structural problems with geometrical non-linearity. A finite element based tool is developed, taking advantage of the analytical formulation of the stiffness matrix of a beam element, which is explicitly separated in linear and non-linear terms. The methodology proposes the substitution of the typical Newton-type non-linear analysis procedure, by a series of incremental linear analyses and a set of ‘fictitious’ forces, replacing the non-linear effect. The proposed technique is demonstrated in several structural problems that exhibit geometrical non-linear behaviour, with satisfactory results. The method’s advantages on the analysis of large-scale non-linear problems are discussed, as well as the limitations and the further development that is required.  相似文献   

15.
李治广   董昕   马健 《力学学报》2009,17(4):569-573
岩质边坡结构面抗剪强度是分析边坡稳定性的重要参数。反分析法是视滑坡将要滑动而尚未滑动的瞬间为极限平衡状态,求解滑动面抗剪强度的一种方法,相对于室内实验和原位测试具有成本低的特点,但其普适性较差,对反分析法的应用条件进行研究对该方法在边坡工程中的准确应用具有重要意义。本文用反分析和室内试验两种方法确定西柏坡纪念馆不稳定斜坡结构面抗剪强度,发现对于单滑动面岩质顺层滑坡,直接采用滑坡断面进行反分析获得的结构面抗剪强度与室内试验结果相近,可用于评价同一结构面边坡的稳定性。  相似文献   

16.
Summary The paper proposes a method in finite element analysis for estimating natural frequencies of a disk tensioned by rolling, without the use of eigenvalue analysis. The natural frequencies of a disk vary when the localized plastic deformation caused by roll-tensioning induces residual stresses. Tensioning is used for improving the dynamic stability of circular saws; the optimal condition of rolling can be predicted from natural frequency characteristics. In the proposed method, the natural frequencies after rolling are easily estimated from the mode shapes of the disk before rolling and the stress distribution after rolling. The method is based on ideas similar to thermal stress and sensitivity analysis rather than on eigenvalue analysis. The effectiveness of the method is shown by comparing the natural frequency characteristics obtained by this method with those by eigenvalue analysis. Received 18 June 1998; accepted for publication 8 April 1999  相似文献   

17.
This work reviews methods for time-series analysis for characterization of the dynamics of gas–solid fluidized beds from in-bed pressure measurements for different fluidization regimes. The paper covers analysis in time domain, frequency domain, and in state space. It is a follow-up and an update of a similar review paper written a decade ago. We use the same pressure time-series as used by Johnsson et al. (2000). The paper updates the previous review and includes additional methods for time-series analysis, which have been proposed to investigate dynamics of gas–solid fluidized beds. Results and underlying assumptions of the methods are discussed.  相似文献   

18.
Summary The paper presents an analysis of the temperature field and phase transformation kinetics for cylindrical steel elements with arbitrary shaped cross sections. The influence of different cooling rates as well as different time intervals to achieve the half of the full austenite into pearlite transformation τ0.5 and weight fractions of pearlite and martensite are taken into account. The analysis is based on Lomakin's theory [2, 3, 4] and its modification [5] as well as the laws of phase transformation kinetics of [9]. The elaborated program of numerical calculations refers to steel grades characterized by C-shaped T-T-T curves and with carbon content close to that of an eutectoidal steel. The analysis is made for a two-dimensional region. As an example, a spline shaft with arbitrary shaped cross section is investigated. It is assumed that the heat exchange occurs on the boundary of the cross section alone. The solution of the problem is based on the variational difference method, being a combination of the finite element method and the finite difference method. Accepted for publication 6 August 1996  相似文献   

19.
A wavelet–based experimental technique for studying the structure of material surfaces is proposed. The basic theoretical concepts of the local–frequency and wavelet analyses are given. Examples of the wavelet analysis of model images are considered. The structure of briquettes obtained by compaction of titanium sponge is determined with the use of wavelet analysis.  相似文献   

20.

Current analytical approaches for temperature transient analysis heavily rely on the assumption of the constant rate production, which is often invalid for the extended period of oil production. This work addresses this issue by introducing novel analytical approaches to model the temperature signal under dynamic rate and pressure conditions. The introduced methods share underlying theories of superposition principle and production rate normalization from pressure transient analysis and include a newly derived analytical solution when these theories are not applicable. With adapting these methods, cases with complex production history are modeled using analog cases producing with a constant rate. The dynamic temperature analysis developed herein is validated using synthetic temperature data both graphically and by quantitative estimation of reservoir properties. The estimation outputs of these methods include permeability, drainage area, and damaged zone properties. Other features of existing temperature transient analysis, such as fluid property correction and monitoring well surveillance, are also extended to variable rate and pressure conditions in this paper. Two cases documented in the literature are addressed by dynamic temperature analysis for which decent reservoir characterization results are obtained. The dynamic temperature analysis proposed in this paper extends the scope of temperature transient analysis to complex production constraints and demonstrates convincing results for practical purposes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号