首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Mean-field evolution equations for the exciton and photon populations and polarizations (Bloch–Lamb equations) are written and numerically solved in order to describe the dynamics of electronic states in a quantum dot coupled to the photon field of a microcavity. The equations account for phase space filling effects and Coulomb interactions among carriers, and include also (in a phenomenological way) incoherent pumping of the quantum dot, photon losses through the microcavity mirrors, and electron–hole population decay due to spontaneous emission of the dot. When the dot may support more than one electron–hole pair, asymptotic oscillatory states, with periods between 0.5 and 1.5 ps, are found almost for any values of the system parameters.  相似文献   

2.
In this work we investigate the influence of extractor design and temperature on transport properties of quantum cascade detector. For this purpose we realize numerical calculation of electron lifetimes considering electron–phonon and electron impurities scattering. Electron–phonon interactions are treated using Fermi Golden Rule which allows to calculate lifetime of carriers with temperature and structure design taking into account. Transport characteristics of the quantum cascade detectors have been computed using density matrix theory. As a result, we have obtained the system of ordinary differential equations describing dynamics of electron distribution functions and intersubband correlations. Managing carrier lifetime in quantum wells gives us possibility to make device response faster. Also carrier lifetime is the relevant characteristic, allows us to calculate a lot of parameters such as quantum efficiency and photocurrent.  相似文献   

3.
The coherent dynamics of two interacting carriers in one-dimensional quantum dot arrays driven by oscillating electric fields is theoretically investigated with the help of numerical calculations. The coherent localization of two electrons and that of an electron–hole pair are studied in this paper. For the two-electron case, the dynamic localization of the electrons is achieved when the Coulomb interaction is large enough. In this coherent localization, the Coulomb repulsion helps the electrons to be localized. For an electron–hole pair, although the dynamic localization of the composite particle does not occur due to charge neutrality, a different type of coherent localization can occur. These phenomena are explained by the quasienergy spectra based on Floquet analysis.  相似文献   

4.
We present a novel self-assembled quantum dot structure designed to spatially separate and store photo-generated electrons and holes in pairs of strain coupled quantum dots. The spatial separation of electron–hole pairs into quantum dots and strain-induced quantum dots has been investigated and verified by photoluminescence experiments. Results from time-resolved PL demonstrates that at low temperatures (3 K) the electron–hole pair can be stored for several seconds.  相似文献   

5.
In tilted magnetic fields a bilayer electron–hole system is found to generate a photocurrent under terahertz radiation as the system is tuned to electron cyclotron resonance conditions. The photoinduced current amplitude oscillates with the magnetic field in correlation with Shubnikov–de Haas oscillations for electrons. The phenomenon is accounted for by a photomagnetic effect in electron–hole systems in the quantum Hall regime and has potentialities for terahertz detection and spectroscopy.  相似文献   

6.
We report the observation of strong Fermi-edge singularities in the photoluminescence spectrum of strongly-confined, modulation-doped GaAs v-groove quantum wires. The behaviour of the singularity has been investigated at high excitation intensity, and both lattice and electrical heating. The latter produces a strong reduction of the singularity due to Fermi surface smearing, whereas, increased photoexcitation produces complex electron–hole correlation effects.  相似文献   

7.
A theoretical analysis of emission line broadening due to Coulomb interaction of carriers is performed. An analytical approximation for the spectral line shape function with exponential decays is derived by using the perturbation theory for many-body electron–hole systems for both non-degenerate and degenerate conditions. An explanation of the experimentally observed spectral line asymmetry and the linewidth change as a function of the temperature and the excitation level is given.  相似文献   

8.
9.
We examine the effects of medium dependence of the two-body dynamics on the many-body properties of Fermion systems, with approximation ultimately aimed at lower densities for all temperatures. The dynamics are initially treated in terms of a pair-composite formulation given previously, and the underlying single-Fermion nature of the pair constituents allows interpretation via more conventional thermal many-body formalism. This permits construction of coupled equations for composite amplitudes and bound states, single-particle energy and momentum distributions, and macroscopic thermodynamic properties. We explore differences between our results and those of traditional theories which incorporate two-body correlations in some fashion, and we display explicitly how correct limiting results are recovered from our equations when the density and/or coupling strength is decreased. Finally, we provide an interpretation of our results via a form of quasiparticle quantum cluster expansion analogous to the familiar particle quantum cluster expansion.  相似文献   

10.
By the use of a bosonization transformation and group-theoretical arguments, the Hamiltonian of an electron–hole–photon system in a laser-excited direct two-band semiconductor is transcribed into that of an exciton–photon system with the particle spins rigorously taken into consideration. It is shown that the third-order optical nonlinearities in the spectral region below the band edge have their microscopic origin in two-exciton correlations, which are expressed in terms of the effective exciton–exciton and anharmonic exciton–photon interactions. The dependence of the interparticle interactions on the spin states of quasiparticles is behind the polarization dependence of the semiconductor nonlinear optical response. On the example of the system of heavy hole excitons in quantum wells, grown from compounds with the zinc blende type of symmetry, it is demonstrated that the effective exciton–exciton interaction in two-exciton states with nonzero total spin is repulsive, while in zero-spin states it is attractive, which may result in the biexciton formation. The derived Heisenberg equations of motion for the exciton and biexciton operators form the basis for a theoretical study of the coherent four-wave-mixing in GaAs and ZnSe quantum wells. It is readily apparent from the equations that in different polarization configurations the coherent four-wave-mixing is generated by different ingredients of two-exciton Coulomb correlations: in the co-circular configuration, it is the interexciton repulsion, in the cross-linear configuration, the formation of the biexciton and its coupling to excitons, and in the collinear configuration, both of them jointly. The obtained expressions for the time-resolved and frequency-resolved four-wave-mixing signals adequately describe the main characteristics and various details of wave mixing phenomena, including a biexciton signature in the appropriate polarization configurations. Results of the work clarify the microscopic mechanism of the polarization dependence in coherent four-wave-mixing spectroscopy in semiconductor quantum wells.  相似文献   

11.
A calculation of relaxation time for (i) electron–electron scattering in a modulation-doped superlattice of type-I and (ii) electron–electron, hole–hole and electron–hole scattering processes in a compositional superlattice of type-II has been performed, using Fermi's golden rule. As compared to a two-dimensional electron gas system, both intralayer and interlayer interactions, between charge carriers in a superlattice, contribute to relaxation time. It is found that scattering processes at all possible value of momentum transfer contribute to relaxation time, for a given value of temperature and carrier density. We further find interlayer interactions in a superlattice make a significant contribution to relaxation time. Relaxation time is found to decrease on increasing temperature, carrier density and single particle energy, in a superlattice. The computed relaxation time for an electron (hole) in a superlattice enhances on increasing the width of layer consisting of electrons (holes). The electron–hole (hole–electron) scattering process in a type-II superlattice yields maximum contribution to the relaxation time when a hole layer lies exactly in between two consecutive electron layers.  相似文献   

12.
We study theoretically correlations of electrons and holes in unbalanced double-layer electronic systems in strong magnetic fields. Calculations are made using the exact diagonalization and the variational wave function. The ground state of an electron–hole pair in quantized cyclotron orbits possesses an in-plane electric dipole moment, when an electron and a hole are in different Landau orbits with different radii. The resulting attractive interactions between pairs creates the possibility of novel states.  相似文献   

13.
We introduce a computationally efficient approach to calculating characteristics of excitons in quantum wells. In this approach we derive a system of self-consistent equations describing the motion of an electron–hole pair. The motion in the growth direction of the quantum well in this approach is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. The approach is applied to shallow quantum wells, for which we obtained an analytical expression for the exciton binding energy and the ground state eigenfunction. Our numerical results yield lower exciton binding energies in comparison to standard variational calculations, while require reduced computational effort.  相似文献   

14.
We review far-infrared experiments on quantum wires and dots. In particular, we show that with tailored deviations from a parabolic external lateral confinement potential one can break Kohn’s theorem. This allows a detailed investigation of the internal relative motion in quantum dots and wires and the study of electron–electron interaction effects, for example, the formation of compressible and incompressible states in quantum dots and antidots.  相似文献   

15.
Sum rule for the optical absorption of an interacting many-polaron gas   总被引:1,自引:0,他引:1  
A sum rule for the first frequency moment of the optical absorption of a many-polaron system is derived, taking into account many-body effects in the system of constituent charge carriers of the many-polaron system. In our expression for the sum rule, the electron-phonon coupling and the many-body effects in the electron (or hole) system formally decouple, so that the many-body effects can be treated to the desired level of approximation by the choice of the dynamical structure factor of the electron (hole) gas. We calculate correction factors to take into account both low and high experimental cutoff frequencies. Received 26 April 2000 and Received in final form 5 December 2000  相似文献   

16.
In the presence of a stationary electric field applied in the growth direction tunneling of electrons out of the quantum dots can take place. This mechanism competes with the quantum confined Stark effect (QCSE) that produces an increase of the exciton lifetime by increasing the electric field, mainly due to a net decrease of the electron–hole wavefunction overlap. The electric field range where QCSE dominates over tunneling will be mainly determined by the size of the nanostructure along the vertical direction (height), as demonstrated in this work.  相似文献   

17.
By means of degenerate four-wave mixing (FWM), we investigate the quantum coherence of electron–hole pairs in the presence of a two-dimensional electron gas in modulation-doped GaAs–AlGaAs quantum wells in the regime of the integer quantum-Hall effect. We observe large jumps in the decay time of the FWM signal at even Landau level filling factors. The main features of the experimental observations can be qualitatively reproduced by a model which takes into account the number of unoccupied states within the highest partially occupied Landau level. Furthermore, we observe quantum beats between up to three different Landau level transitions.  相似文献   

18.
In the Hartree–Fock approximation and at total filling factor ν=4N+1, the ground state of the two-dimensional electron gas in a double quantum well system in a quantizing magnetic field is, in some range of interlayer distances, a coherent striped phase. This stripe phase has one-dimensional coherent channels that support charged excitations in the form of pseudospin solitons. In this work, we compute the transport gap of the coherent striped phase due to the creation of soliton–antisoliton pairs using a supercell microscopic unrestricted Hartree–Fock approach. We study the energy gap as a function of interlayer distance and tunneling amplitude. Our calculations confirm that the soliton–antisoliton excitation energy is lower than the corresponding Hartree–Fock electron–hole pair energy.  相似文献   

19.
We have studied the optical properties of compound semiconductor quantum dots (CSQDs) embedded in Si. Both photoluminescence and electroluminescence spectra were found to be associated with an inhomogeneously broadened band in the near-infrared. A long decay lifetime of luminescence was observed, which is in support of an indirect transition in both k- and real-space. Strong localization of electron–hole pairs was found to occur due to a deep potential well created by the built-in electric dipole at the III–V/Si interface. A Si-based light-emitting diode with GaSb-CSQDs in the active layer showed a high value of quantum efficiency. Light amplification was also observed under pulsed laser excitation.  相似文献   

20.
A simple model is assumed to obtain analytical solutions of the Schrödinger equation in prolate spheroidal coordinates for the electron–hole pair confined to an ellipsoidal quantum dot (EQD) or to a semiellipsoidal quantum dot (SEQD). Numerical calculations are carried out to find the excitonic states as well as the electronic states decoupled from holes in such geometries. Their dependence on the inverse of the eccentricity of the ellipsoidal surfaces for different interfocal distances is investigated. The binding energy and the recombination radiation energy are calculated for GaAs and InAs QDs; the same dependences are also investigated. Comparison with previous calculations and experiments shows a good order-of-magnitude agreement. It is demonstrated that some of the available states in an EQD are forbidden in the SEQD and, consequently, some of the photoluminescence lines observed in the former case are suppressed in the latter geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号