首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
"Formal" and standard RuII-catalyzed [2+2+2] cycloaddition of 1,6-diynes to alkenes gave bicyclic 1,3-cyclohexadienes in relatively good yields. When terminal 1,6-diynes 1 were used, two isomeric bicyclic 1,3-cyclohexadienes 4 or 6 were obtained, depending on the acyclic or cyclic nature of the alkene partner. When unsymmetrical substituted 1,6-diynes 7 were used, the reaction with acyclic alkenes took place regio- and stereoselectively to afford bicyclic 1,3-cyclohexadienes 8. A cascade process that behaves as a "formal" RuII-catalyzed [2+2+2] cycloaddition explained these results. Initially, a Ru-catalyzed linear coupling of 1,6-diynes 1 and 7 with acyclic alkenes occurs to give open 1,3,5-trienes of type 3, which after a thermal disrotatory 6e(-) pi-electrocyclization led to the final 1,3-cyclohexadienes 4 and 8. When disubstituted 1,6-diyne 10 was used with electron-deficient alkenes, new exo-methylene cyclohexadienes 12 arose from a competitive reaction pathway.  相似文献   

2.
Functionalized bicyclic 1,3-cyclohexadienes can be easily prepared by a new cascade reaction which involves the Ru-catalyzed addition of acyclic alkenes to 1,6-diynes to give (Z)-hexatrienes, followed by a pure thermal 6e-pi electrocyclization.  相似文献   

3.
Varela JA  Castedo L  Saá C 《Organic letters》2003,5(16):2841-2844
[reaction: see text] A new "formal" Ru-catalyzed [4+2+2] cycloaddition of 1,6-diynes to 1,3-dienes giving conjugated 1,3,5-cyclooctatrienes and vinylcyclohexadienes is described. This formal cycloaddition is really a tandem process, the Ru(II)-catalyzed formation of (Z)-tetraenes or vinyl-(Z)-trienes followed by a pure thermal conrotatory 8 pi- or disrotatory 6 pi-electrocyclization. The proposed mechanism allows the differences in product ratio to be explained in terms of steric and stereochemical considerations.  相似文献   

4.
The ruthenium-catalyzed [2+2] cycloadditions of various bicyclic alkenes with an alkyne have been investigated. The presence of the oxygen in the bridgehead of the bicyclic alkene significantly enhanced the rate of the ruthenium-catalyzed [2+2] cycloadditions. The presence of a C1-substituent on the oxanorbornadiene decreased the rate of the cycloaddition and electron-withdrawing C1-substituents were found to be more reactive than electron-donating C1-substituents in the Ru-catalyzed [2+2] cycloaddition. The nature of the substituent on the benzene ring of oxabenzonorbornadienes showed little effect on the rate of the cycloaddition.  相似文献   

5.
Sung MJ  Pang JH  Park SB  Cha JK 《Organic letters》2003,5(12):2137-2140
[reaction: see text] In connection with the known diyne-ene [2 + 2 + 2] cycloaddition reactions mediated by titanium aryloxides, the ability of titanium alkoxides to promote coupling of a titanacyclopentadiene with an alkene has been assessed for the isomerization-free preparation of 1,3-cyclohexadienes. The successful cycloaddition by titanium alkoxides is predicated on the use of homoallylic alcohols as the olefin component. With secondary homoallylic alcohols, high 1,3-diastereoselectivity is observed, which lends itself to enantioselective preparation of functionalized 1,3-cyclohexadienes.  相似文献   

6.
[STRUCTURE: SEE TEXT] A neutral rhodium(I)/BINAP complex effectively catalyzed a [2+2+2] cycloaddition of 1,6-diynes with isothiocyanates to give bicyclic thiopyranimines in 59-98% isolated yield. The reaction with carbon disulfide also proceeded to give bicyclic dithiopyrones in 74-85% isolated yield.  相似文献   

7.
In the presence of 10 mol % Cp*Ru(cod)Cl, 1,6-diynes with a tertiary center at 4-position reacted with various isothiocyanates at their C=S double bond to afford bicyclic (2H)-thiopyranimines in 35-88% yields. The (2H)-thiopyran structure was unequivocally determined by X-ray analysis. The cycloaddition of carbon disulfide with a diyne similarly gave the expected bicyclic dithiopyrone in 50% yield.  相似文献   

8.
The enantioselective [2 + 2 + 2] cycloaddition of 1,6-diynes with alpha-methylene lactones and cyclic ketones gave various chiral spirocyclic compounds. The reaction proceeded with high enantioselectivity when the rhodium-xylylBINAP complex was used as a chiral catalyst. Not only exo-methylene cyclic compounds but also exo-methylene acyclic compounds could be used as coupling partners for diynes. The present protocol provides access to a new chiral library possessing a quaternary carbon center, including a spirocyclic system.  相似文献   

9.
Satoh Y  Obora Y 《Organic letters》2011,13(10):2568-2571
Three-component [2 + 2 + 2] cycloaddition of terminal alkynes, internal alkynes, and terminal alkenes is achieved using an NbCl(3)(DME) catalyst, leading to 1,3,4,5-substituted 1,3-cyclohexadienes in excellent yields with high chemo- and regioselectivity.  相似文献   

10.
In the presence of a catalytic amount of Cp*RuCl(cod), 1,6-diynes chemoselectively reacted with monoalkynes at ambient temperature to afford the desired bicyclic benzene derivatives in good yields. A wide variety of diynes and monoynes containing functional groups such as ester, ketone, nitrile, amine, alcohol, sulfide, etc. can be used for the present ruthenium catalysis. The most significant advantage of this protocol is that the cycloaddition of unsymmetrical 1,6-diynes with one internal alkyne moiety regioselectively gave rise to meta-substituted products with excellent regioselectivity. Completely intramolecular alkyne cyclotrimerization was also accomplished using triyne substrates to obtain tricyclic aromatic compounds fused with 5-7-membered rings. A ruthenabicycle complex relevant to these cyclotrimerizations was synthesized from Cp*RuCl(cod) and a 1,6-diyne possessing phenyl terminal groups, and its structure was unambiguously determined by X-ray analysis. The intermediary of such a ruthenacycle intermediate was further confirmed by its reaction with acetylene, giving rise to the expected cycloadduct. The density functional study on the cyclotrimerization mechanism elucidated that the cyclotrimerization proceeds via oxidative cyclization, producing a ruthenacycle intermediate and subsequent alkyne insertion initiated by the formal [2 + 2] cycloaddition of the resultant ruthenacycle with an alkyne.  相似文献   

11.
Ruthenium-catalyzed [2+2] cycloadditions of bicyclic alkenes with alkynyl sulfides and alkynyl sulfones were investigated. The sulfide and sulfone moieties were found to be compatible with the Ru-catalyzed cycloadditions, giving the corresponding cyclobutene cycloadducts in good yields. The sulfonyl-containing cycloadducts can be transformed into a variety of products that are difficult to obtain via direct cycloaddition.  相似文献   

12.
A cationic rhodium(I)/Segphos complex catalyzes a [2 + 2 + 2] cycloaddition of internal 1,6-diynes with a phosphonate- or ester-substituted 1,3-butadiyne leading to C(2)-symmetric axially chiral biaryl diphosphonates or dicarboxylates, respectively, in high yields with outstanding ee's. The use of a phosphonate- or ester-substituted 1,3-butadiyne as a cycloaddition partner and Segphos as a ligand is crucial for the success of this transformation.  相似文献   

13.
[reaction: see text] Silicon-bridged 1,6-diynes underwent [2 + 2 + 2] cycloaddition with alkynes in the presence of an iridium(I)-phosphine catalyst to afford densely substituted silafluorene derivatives. Extended silafluorene skeletons were constructed by the [2 + 2 + 2] cycloaddition of tetraynes.  相似文献   

14.
Treatment of N-tosyliodoaziridine derivatives with Et(3)B efficiently produces various azahomoallyl radical (2-akenylamidyl radical) species which give oxygen-functionalized pyrrolidine derivatives through iodine atom transfer [3 + 2] cycloaddition with electron-rich alkenes such as enol ethers and ketene acetal. The present cycloaddition reaction proceeds regioselectively via C-N bond cleavage of an aziridinylalkyl radical intermediate and addition of the resulting azahomoallyl radicals to the terminal carbon of an alkene. The reaction of alkenes with the cyclohexenylamidyl radical generated from an optically active bicyclic iodoaziridine [(1S,2S,6S)-2-iodo-7-(p-toluenesulfonyl)-7-azabicyclo[4.1.0]heptane, 94% ee] also proceeds to give optically active octahydroindole derivatives (84-93% ee).  相似文献   

15.
Rholling in the bicycles: A rhodium(I)-catalyzed cycloisomerization for the synthesis of bicyclic compounds containing a cycloheptatriene ring from linear alkenynes (see scheme; cod=1,5-cyclooctadiene) is proposed to proceed through 1,2-acyloxy migration, 6?π electrocyclization, migratory insertion, and reductive elimination. The overall process can be viewed as a novel intramolecular [5+2] cycloaddition with concomitant 1,2-acyloxy migration.  相似文献   

16.
Shibata T  Arai Y  Tahara YK 《Organic letters》2005,7(22):4955-4957
[reaction: see text] The enantioselective [2 + 2 + 2] cycloaddition of 1,6-enynes and alkynes using chiral rhodium catalysts gave cycloadducts containing quaternary carbon stereocenters. Both symmetrical and unsymmetrical alkynes and acetylene could be used as coupling partners, and the corresponding bicyclic cyclohexa-1,3-dienes were obtained in good to excellent ee.  相似文献   

17.
A variety of 1,6‐heptadiynes and certain borylalkynes co‐oligomerize with enol ethers in the presence of [CpCo(C2H4)2] (Cp=cyclopentadienyl) to furnish the hitherto elusive acyclic 2:1 products, 1,3,5‐trien‐1‐ol ethers, in preference to or in competition with the alternative pathway that leads to the standard [2+2+2] cycloadducts, 5‐alkoxy‐1,3‐cyclohexadienes. Minor variations, such as lengthening the diyne tether, cause reversion to the standard mechanism. The trienes, including synthetically potent borylated derivatives, are generated with excellent levels of chemo‐, regio‐, and diastereoselectivity, and are obtained directly by decomplexation of the crude mixtures during chromatography. The cyclohexadienes are isolated as the corresponding dehydroalkoxylated arenes. In one example, even ethene functions as a linear cotrimerization partner. The alkoxytrienes are thermally labile with respect to 6π‐electrocyclization–elimination to give the same arenes that are the products of cycloaddition. The latter, regardless of the mechanism of their formation, can be viewed as the result of a formal [2+2+2] cyclization of the starting alkynes with acetylene. One‐pot conditions for the exclusive formation of arenes are developed. DFT computations indicate that cyclohexadiene and triene formation share a common intermediate, a cobaltacycloheptadiene, from which reductive elimination and β‐hydride elimination compete.  相似文献   

18.
By switching the position of the alkene and alkyne, a new type of 3‐acyloxy‐1,4‐enyne (ACE) five‐carbon building block was developed for Rh‐catalyzed intramolecular [5+2] cycloaddition. An electron‐withdrawing acyl group on the alkyne termini of the ACE was essential for a regioselective 1,2‐acyloxy migration. This new method provided bicyclic [5.3.0]decatrienes that are different from previous methods because of the positions of the alkenes and the acyloxy group. Multiple mechanistic pathways become possible for this new [5+2] cycloaddition and they are investigated by computational studies.  相似文献   

19.
Ruthenium-catalyzed [2+2] cycloadditions between bicyclic alkenes and ynamides were investigated. The ynamide moiety was found to be compatible with the ruthenium-catalyzed cycloaddition conditions giving the corresponding cyclobutene cycloadducts in moderate to good yields (up to 97%). Diastereoselective cycloaddition utilizing chiral cyclic ynamides were also examined and a low to moderate level of asymmetric induction was observed.  相似文献   

20.
Pyridines can be efficiently synthesized by Ru(II)-catalyzed [2 + 2 + 2] cycloaddition of 1,6-diynes to alpha,omega-dinitriles or electron-deficient nitriles or by Ru(II)-catalyzed [2 + 2 + 2] cocyclization of electron-deficient alkynes and electron-deficient nitriles. The reactions with dinitriles seem likely to proceed via ruthenacyclopentadiene intermediates and the reactions with electron-poor nitriles via azaruthenacyclopentadienes. The reaction with asymmetric electron-deficient alkynes affords 2,3,6-trisubstituted pyridines in good yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号