首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of citric acid onto goethite, kaolinite, and illite was measured as a function of pH (adsorption edges) and concentration (adsorption isotherms) at 25 degrees C. The greatest adsorption was onto goethite and the least onto illite. Adsorption onto goethite was at a maximum below pH 5 and decreased as the pH was increased to pH 9. For kaolinite, maximum adsorption occurred between pH 4.5 and pH 7, decreasing below and above this pH region, while for illite maximum adsorption occurred between about pH 5 and pH 7, decreasing at both lower and higher pH. ATR-FTIR spectra of citrate adsorbed to goethite at pH 4.6, pH 7.0, and pH 8.8 were compared with those of citrate solutions between pH 3.5 and pH 9.1. While the spectra of adsorbed citrate resembled those of the fully deprotonated solution species, there were significant differences. In particular the C[bond]O symmetric stretching band of the adsorbed species at pH 4.6 and 7.0 changed shape and was shifted to higher wave number. Further spectral analysis suggested that citrate adsorbed as an inner-sphere complex at pH 4.6 and pH 7.0 with coordination to the surface most probably via one or more carboxyl groups. At pH 8.8 the intensity of the adsorbed bands was much smaller but their shape was similar to those from the deprotonated citrate solution species, suggesting outer-sphere adsorption. Insufficient citric acid adsorbed onto illite or kaolinite to provide spectroscopic information about the mode of adsorption onto these minerals. Data from adsorption experiments, and from potentiometric titrations of suspensions of the minerals in the presence of citric acid, were fitted by extended constant-capacitance surface complexation models. On the goethite surface a monodentate inner-sphere complex dominated adsorption below pH 7.9, with a bidentate outer-sphere complex required at higher pH values. On kaolinite, citric acid adsorption was modeled with a bidentate outer-sphere complex at low pH and a monodentate outer-sphere complex at higher pH. There is evidence of dissolution of kaolinite in the presence of citric acid. For illite two bidentate outer-sphere complexes provided a good fit to all data.  相似文献   

2.
The adsorption of cadmium onto kaolinite and Muloorina illite in the presence of citric acid has been measured as a function of pH and cadmium concentration at 25 degrees C. When citric acid is present in the systems cadmium adsorption is slightly enhanced below pH 5, but significantly suppressed between pH 5 and 8, for both substrates. At higher citric acid concentrations very little cadmium adsorbs onto kaolinite from pH 5 to 8. Above pH 8 adsorption of Cd(II) onto illite is enhanced in the presence of citric acid, especially at lower concentrations, but this does not occur for kaolinite. Adsorption and potentiometric titration data were fitted by simple extended constant-capacitance surface complexation models for the two substrates. Enhancement of adsorption at lower pH values was ascribed to the ternary reaction [X(-)--K(+)](0)+Cd(2+)+L(3-)+2H(+) right arrow over left arrow (0)+K(+) involving outer-sphere complexation with permanently charged X(-) sites on the "silica" faces of both clay minerals. The models suggested that suppression of adsorption in the intermediate pH range was due to the formation of a strong CdL(-) solution complex which adsorbed neither on the permanently charged sites nor on the surface hydroxyl groups at the edges of the clay crystals. At higher pH values the dominant solution complex, CdLOH(2-), apparently adsorbed as an outer-sphere complex at surface hydroxyl groups on illite, SOH+2Cd(2+)+L(3-) right arrow over left arrow [SOCd(+)--CdOHL(2-)](-)+2H(+), but not on kaolinite. This difference in behavior results from the presence of =FeOH groups on the illite surface which can form surface complexes with CdLOH(2-), while the =AlOH groups on the kaolinite surface cannot.  相似文献   

3.
The adsorption of cadmium onto goethite in the presence of citric acid was measured as a function of pH and cadmium concentration at 25 degrees C. Potentiometric titrations were also performed on the system. Cadmium adsorption onto goethite was enhanced above pH 4 in the presence of 50 microM, 100 microM and 1 mM citric acid. While there was little difference between the enhancements caused by 50 and 100 microM citric acid below pH 6, above pH 6 further enhancement is seen in the presence of 100 microM citric acid. When 1 mM citric acid was present, the enhancement of cadmium adsorption was greater below pH 6, with increased Cd(II) adsorption down to pH 3.5. However, above pH 6, 1 mM of citric acid caused slightly less enhancement than the lower citric acid concentrations. ATR-FTIR spectra of soluble and adsorbed citrate-cadmium species were measured as a function of pH. At pH 4.6 there was very little difference between the ternary Cd(II)-citric acid-goethite spectrum and the binary citric acid-goethite spectrum. However, spectra of the ternary system at pH 7.0 and 8.7 indicated the presence of additional surface species. Further analysis of the spectra suggested that these were metal-ligand outer-sphere complexes. Data from the adsorption experiments and potentiometric titrations of the ternary Cd(II)-citric acid-goethite system were fitted by an extended constant-capacitance surface complexation model. The spectroscopic data were used to inform the choice of surface species. Three reactions in addition to those for the binary Cd(II)-goethite and citric acid-goethite systems were required to describe all of the data. They were [formula in text], [formula in text], and [formula in text]. Neither the spectroscopy nor the modeling suggested the formation of a ternary inner-sphere complex or a surface precipitate under the conditions used in this study.  相似文献   

4.
The effect of benzene carboxylic acids on the adsorption of Cd(II) (5×10−5 M) by goethite and kaolinite has been studied in 0.005 M NaNO3 at 25°C. The concentrations of phthalic (benzene-1,2-dicarboxylic acid), hemimellitic (1,2,3), trimellitic (1,2,4), trimesic (1,3,5), pyromellitic (1,2,4,5) and mellitic (1,2,3,4,5,6) acids varied from 2.5×10−5 to 1×10−3 M. Mellitic acid complexes Cd(II) strongly above about pH 3, but the other acids only at higher pH, phthalic acid forming the weakest complexes. Phthalic, trimesic and mellitic acids adsorbed strongly to goethite at pH 3, but adsorption decreased at higher pH; however, mellitic acid was still about 50% adsorbed at pH 9, by which the other two were almost entirely in solution. At 10−3 M all the acids enhanced the adsorption of Cd(II) to goethite, the higher members of the series being the most effective. The higher members of the series suppressed Cd(II) adsorption onto kaolinite, but phthalic and trimesic acids caused slight enhancement. The effects of mellitic acid on Cd(II) adsorption depended strongly on its concentration. The maximum enhancement of Cd(II) adsorption onto goethite was at 10−4 M. The greatest suppression of Cd(II) adsorption onto kaolinite was at 10−3 M, and at 2.5×10−5 M mellitic acid enhanced Cd(II) adsorption onto kaolinite at intermediate pH. The results are interpreted in terms of complexation between metal and ligand (acid), metal and substrate, ligand and substrate, and the formation of ternary surface complexes in which the ligand acts as a bridge between the metal and the surface.  相似文献   

5.
The adsorption of Cd(II) and Co(II) onto goethite was measured at five temperatures between 10 and 70 degrees C. For both cations the amount adsorbed at any given pH increased as the temperature was increased. Cd(II) adsorbed at a slightly lower pH at each temperature than Co(II). Adsorption isotherms at pH 7.00 for Cd(II) could be fitted closely by a simple Langmuir model, but a two-site Langmuir model was needed for Co(II). Potentiometric titrations of goethite suspensions in the presence and absence of added cation could be modeled closely by a constant-capacitance surface complexation model that assumed the adsorption reactions M2+ + SOH ⇋ SOM+ + H+ and M2+ + SOH + H2O ⇋ SOMOH + 2H+, where M represents Cd or Co. This model also fitted the experimental data from the adsorption edge and adsorption isotherm experiments. Thermodynamic parameters estimated from both Langmuir and surface complexation models showed that the adsorption of both metals was endothermic. Values obtained for the adsorption enthalpies from both modeling schemes were similar for both cations. Estimates of the adsorption entropies were model-dependent: Langmuir parameters yielded positive entropies, while some of the surface complexation parameters generated negative adsorption entropies. Copyright 1999 Academic Press.  相似文献   

6.
Illite samples from Fithian, IL were purified and saturated with Na(+) ions. The acid-base surface chemistry of the Na-saturated illite was studied by potentiometric titration experiments with 0.1, 0.01, and 0.001 M NaNO(3) solutions as the background electrolyte. Results showed that the titration curves obtained at different ionic strengths did not intersect in the studied pH range. The adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto illite was investigated as a function of pH and ionic strength by batch adsorption experiments. Two distinct mechanisms of metal adsorption were found from the experimental results: nonspecific ion-exchange reactions at lower pH values on the basal surfaces and 'frayed edges' and specific adsorption at higher pH values on the mineral edges. Ionic strength had a greater effect on the ion-exchange reactions. The binding constants for the five heavy metals onto illite were determined using the least-square fitting computer program FITEQL. Linear free energy relationships were found between the surface binding constants and the first hydrolysis constants of the metals.  相似文献   

7.
This study investigates Cu and Zn removal onto binary mixed mineral sorbents from simulated wastewater, relevant to streams impacted by acid mine drainage and effluents. Mixed suspensions of kaolinite/montmorillonite and kaolinite/goethite exhibited different sorption behavior from the single mineral components, reducing Cu and Zn removal (except Cu sorbed on montmorillonite/goethite) over the range of pH investigated. Cu and Zn removal by the electrolyzed systems showed a complex response to increased ionic strength, which increased solid concentration, leading to lower Cu and Zn sorption. Enhanced Cu sorption on the montmorillonite/goethite as age increased may be attributed to increased hydroxylation of the mineral surface resulting in the formation of new reactive sites.  相似文献   

8.
The prediction of the adsorption behavior of natural composite materials was studied by a single mineral approach. The adsorption of U(VI) on single minerals such as goethite, hematite, kaolinite and quartz was fully modeled using the diffuse-layer model in various experimental conditions. A quasi-thermodynamic database of surface complexation constants for single minerals was established in a consistent manner. In a preliminary work, the adsorption of a synthetic mixture of goethite and kaolinite was simulated using the model established for a single mineral system. The competitive adsorption of U(VI) between goethite and kaolinite can be well explained by the model. The adsorption behavior of natural composite materials taken from the Koongarra uranium deposit (Australia) was predicted in a similar manner. In comparison with the synthetic mixture, the prediction was less successful in the acidic pH range. However, the model predicted well the adsorption behavior in the neutral to alkaline pH range. Furthermore, the model reasonably explained the role of iron oxide minerals in the adsorption of U(VI) on natural composite materials.  相似文献   

9.
The present study reports removal of As(V) by adsorption onto laboratory-prepared pure and Cu(II)-, Ni(II)-, and Co(II)-doped goethite samples. The X-ray diffraction patterns showed only goethite as the crystalline phase. Doping of ions in the goethite matrix resulted in shift of d-values. Various parameters chosen for adsorption were nature of adsorbent, percentage of doped cations in goethite matrix, contact time, solution pH, and percentage of adsorbate. It was observed that the pH(pzc) of the goethite surface depended on the nature and concentration of metal ions. The surface area as well as the loading capacity increased with the increase of dopant percentage in goethite matrix. A maximum loading capacity of 19.55 mg/g was observed for 2.7% Cu(II)-doped goethite. The adsorption kinetics for Ni(II), Co(II) and for undoped goethite attained a quasi-equilibrium state after 30 min with almost negligible adsorption beyond this time. In case of Cu(II)-doped goethite samples, the quasi-equilibrium state for As(V) adsorption was observed after 60 min. At each studied pH condition, it was observed that the percentage of adsorption of As(V) decreased in the order Cu(II)-doped goethite > or = Ni(II)-doped goethite > Co(II)-doped goethite > pure goethite. The adsorption followed: Langmuir isotherm, indicating monolayer formation.  相似文献   

10.
The dyads 3, 4, and 6, combining the Bodipy chromophore with a Pt(bpy)(bdt) (bpy = 2,2'-bipyridine, bdt = 1,2-benzenedithiolate, 3 and 6) or a Pt(bpy)(mnt) (mnt = maleonitriledithiolate, 4) moiety, have been synthesized and studied by UV-vis steady-state absorption, transient absorption, and emission spectroscopies and cyclic voltammetry. Comparison of the absorption spectra and cyclic voltammograms of dyads 3, 4, and 6 and those of their model compounds 1a, 2, 5, and 7 shows that the spectroscopic and electrochemical properties of the dyads are essentially the sum of their constituent chromophores, indicating negligible interaction of the constituent chromophores in the ground state. However, emission studies on 3 and 6 show a complete absence of both Bodipy-based fluorescence and the characteristic luminescence of the Pt(bpy)(bdt) unit. Dyad 4 shows a weak Pt(mnt)-based emission. Transient absorption studies show that excitation of the dyads into the Bodipy-based (1)ππ* excited state is followed by singlet energy transfer (SEnT) to the Pt(dithiolate)-based (1)MMLL'CT (mixed metal-ligand to ligand charge transfer) excited state ([Formula: see text] = 0.6 ps, [Formula: see text] = 0.5 ps, and [Formula: see text] = 1.6 ps), which undergoes rapid intersystem crossing to the (3)MMLL'CT state due to the heavy Pt(II) ion. The (3)MMLL'CT state is then depopulated by triplet energy transfer (TEnT) to the low-lying Bodipy-based (3)ππ* excited state ([Formula: see text] = 8.2 ps, [Formula: see text] = 5 ps, and [Formula: see text] = 160 ps). The transition assignments are supported by TD-DFT calculations. Both energy-transfer processes are shown to proceed via a Dexter electron exchange mechanism. The much longer time constants for dyad 6 relative to 3 are attributed to the significantly poorer coupling and resonance of charge-separated species that are intermediates in the electron exchange process.  相似文献   

11.
Withania somnifera (L.) Dunal. (Indian ginseng) is an important medicinal plant which yields pharmaceutically active compounds, namely withanolides. This study deals with the optimisation of the adventitious root suspension culture of W. somnifera for the production of biomass and withanolide-A. We investigated the effects of macro elements (NH(4)NO(3), KNO(3), CaCl(2), MgSO(4) and KH(2)PO(4)) and nitrogen source [[Formula: see text]] of Murashige and Skoog (MS) medium on the accumulation of biomass and withanolide-A content. The highest accumulation of fresh and dry biomass (127.52 and 12.45?g?L(-1)) was recorded in the medium with 0.5× concentration of NH(4)NO(3) and the highest production of withanolide-A was recorded in the medium with 2.0× KNO(3) (14.00?mg?g(-1) DW). The adventitious root growth was greater when the [Formula: see text] concentration was higher than that of [Formula: see text] and the withanolide-A production was highest in the absence of [Formula: see text]. Maximum biomass growth was achieved at [Formula: see text] ratio of 14.38?:?37.60, while withanolide-A production was greatest (11.76?mg?g(-1) DW) when the [Formula: see text] ratio was 0.00?:?18.80?mM. The results of this study are useful for scale-up processes.  相似文献   

12.
Competitive adsorption behavior of heavy metals on kaolinite   总被引:9,自引:0,他引:9  
Polluted and contaminated soils can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a soil system will be affected by the presence of other metals. In this study we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto kaolinite in single- and multi-element systems as a function of pH and concentration, in a background solution of 0.01 M NaNO3. In adsorption edge experiments, the pH was varied from 3.5 to 10.0 with total metal concentration 133.3 microM in the single-element system and 33.3 microM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH50 (the pH at which 50% adsorption occurs) was found to follow the sequence Cu相似文献   

13.
The adsorption of mellitic acid (benzene-1,2,3,4,5,6-hexacarboxylic acid) onto kaolinite was investigated at five temperatures between 10 and 70 degrees C. Mellitic acid adsorption increased with increasing temperature at low pH (below pH 5.5), but at higher pH, the effect of increasing temperature was to reduce the amount adsorbed. Potentiometric titrations were conducted, adsorption isotherms were measured over the same temperature range, and the data obtained were used in conjunction with adsorption edge and ATR-FTIR spectroscopic data to develop an extended constant capacitance surface complexation model of mellitic acid adsorption. A single set of reactions was used to model all data at the five temperatures studied. The model indicates that mellitic acid sorbs via outer-sphere complexation to surface hydroxyl (SOH) groups on the kaolinite surface rather than to permanent charge sites. The reactions proposed are SOH + L6- + 2H+ <-->[(SOH2)+(LH)5-]4- and SOH + L(6-) <--> [(SOH)(L)6-]6-. Thermodynamic parameters calculated from the temperature dependence of the equilibrium constants for these reactions indicate that the adsorption of mellitic acid onto kaolinite is accompanied by a large entropy increase.  相似文献   

14.
Oxide surface coatings are ubiquitous in the environment, but their effect on the intrinsic metal uptake mechanism by the underlying mineral surface is poorly understood. In this study, the zinc (Zn) sorption complexes formed at the kaolinite, goethite, and goethite-coated kaolinite surfaces, were systematically studied as a function of pH, aging time, surface loading, and the extent of goethite coating, using extended X-ray absorption fine structure (EXAFS) spectroscopy. At pH 5.0, Zn partitioned to all sorbents by specific chemical binding to hydroxyl surface sites. At pH 7.0, the dominant sorption mechanism changed with reaction time. At the kaolinite surface, Zn was incorporated into a mixed metal Zn-Al layered double hydroxide (LDH). At the goethite surface, Zn initially formed a monodentate inner-sphere adsorption complex, with typical Zn-Fe distances of 3.18 A. However, with increasing reaction time, the major Zn sorption mechanism shifted to the formation of a zinc hydroxide surface precipitate, with characteristic Zn-Zn bond distances of 3.07 A. At the goethite-coated kaolinite surface, Zn initially bonded to FeOH groups of the goethite coating. With increasing aging time however, the inclusion of Zn into a mixed Zn-Al LDH took over as the dominant sorption mechanism. These results suggest that the formation of a precipitate phase at the kaolinite surface is thermodynamically favored over adsorption to the goethite coating. These findings show that the formation of Zn precipitates, similar in structure to brucite, at the pristine kaolinite, goethite, and goethite-coated kaolinite surfaces at near neutral pH and over extended reaction times is an important attenuation mechanism of metal contaminants in the environment.  相似文献   

15.
In this paper, the capture of radiocadmium (Cd(II)) by adsorption onto the titanate nanotube/iron oxide (TNT/IOM) magnetic composite as a function of contact time, pH, ionic strength, foreign cation and anion ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results indicated that the adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on ionic strength at pH <9.0, but was independent of ionic strength at pH >9.0. Outer-sphere surface complexation were the main mechanism of Cd(II) adsorption onto the TNT/IOM magnetic composite at low pH values, whereas the adsorption was mainly dominated via inner-sphere surface complexation at high pH values. The adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on foreign cation and anion ions at low pH values, but was independent of foreign cation and anion ions at high pH values. A positive effect of HA/FA on Cd(II) adsorption onto the TNT/IOM magnetic composite was found at low pH values, while a negative effect was observed at high pH values. From the results of Cd(II) removal by the TNT/IOM magnetic composite, the optimum reaction conditions can be obtained for the maximum removal of Cd(II) from water. It is clear that the best pH values of the system to remove Cd(II) from solution by using the TNT/IOM magnetic composite are 7.0–8.0. Considering the low cost and effective disposal of Cd(II)-contaminated wastewaters, the best condition for Cd(II) capture by the TNT/IOM magnetic composite is at room temperature and solid content of 0.5 g L?1. These results are quite important for estimating and optimizing the removal of Cd(II) and related metal ions by the TNT-based magnetic composite.  相似文献   

16.
The adsorption of dicarboxylic acids by kaolinite and montmorillonite at different pH conditions was investigated using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) and ex situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The sorption capacity of montmorillonite was greater than that of kaolinite. Adsorption of dicarboxylic acids (succinic acid, glutaric acid, adipic acid, and azelaic acid) was the highest at pH 4 as compared with those at pH 7 and 9. These results indicate that sorption is highly pH-dependent and related to the surface characteristics of minerals. The aliphatic chain length of the dicarboxylic acids highly influenced the sorption amount at acidic pH, regardless of the clay mineral species: succinic acid [HOOC(CH2)2COOH] < glutaric acid [HOOC(CH2)3COOH] < adipic acid [HOOC(CH2)4COOH] < azelaic acid [HOOC(CH2)7COOH]. With in situ ATR-FTIR analysis, most samples tend to have outer-sphere adsorption with the mineral surfaces at all tested pHs. However, inner-sphere coordination between the carboxyl groups and mineral surfaces at pH 4 was dominant from DRIFT analysis with freeze-dried complex samples. The complexation types, inner- or outer-sphere, depended on dicarboxylic acid species, pH, mineral surfaces, and solvent conditions. From the experimental data, we suggest that organic acids in an aqueous environment prefer to adsorb onto the test minerals by outer-sphere complexation, but inner-sphere complexation is favored under dry conditions. Thus, organic acid binding onto clay minerals under dry conditions is stronger than that under wet conditions, and we expect different conformations and aggregations of sorbed organic acids as influenced by complexation types. In the environment, natural organic material (NOM) may adsorb predominantly on positively charged mineral surfaces at the aqueous interface, which can convert into inner-sphere coordination during dehydration. The stable NOM/mineral complexes formed by frequent wetting-drying cycles in nature may resist chemical/microbial degradation of the NOM, which will affect carbon storage in the environment and influence the sorption of organic contaminants.  相似文献   

17.
Sorption of the endocrine disrupting chemicals (EDCs) bisphenol A (BPA), 17alpha-ethynylestradiol (EE2) and estrone (E1) from 3 microM aqueous solutions in 10 mM KNO3 to goethite, kaolinite and montmorillonite was investigated at 25 degrees C. Uptake of the EDCs by goethite and kaolinite suspensions was <20%, and little affected by pH. Sorption by montmorillonite was greater, ranging from 20 to 60%, and steadily increased from about pH 7. The amount of EDC sorbed to the mineral phases generally increased in the order of decreasing solubility (BPA相似文献   

18.
In emulsion polymerization, complete entry of an initiator-derived, surface-active radical may involve its adsorption onto latex particles/water interfaces and subsequently its propagation with one more monomer molecule therein. However, all publications to date have defined this propagation step as a three-dimensional bulk reaction between a surface-active entry radical and a monomer molecule. This is incorrect conceptually. It is proposed that the rate of the propagation of surface-active entry radicals with monomer at latex particles/water interfaces be expressed as [Formula: see text] . In this equation, A is the interfacial area between water and latex particles; [M](P) and [Formula: see text] are the mean concentrations of monomer in the particle phase and entry radicals in the aqueous phase, respectively; k(I) is the radical propagation constant at the interfaces, and may be estimated via transition state theory. For seeded styrene polymerization by Hawkett et al. (J. Chem. Soc. Faraday Trans. 1 76 (1980) 1323), k(I) approximately approximately 4.2x10(-9)k(p) (mol(-1)dm(4)s(-1)) is estimated. Here k(p) is the propagation rate coefficient in bulk polymerization. This alternative approach should be useful for one to simulate radical entry rate in emulsion polymerization where the propagation step may be rate-determining, such as under monomer-starved conditions.  相似文献   

19.
The uptake of anthracene from dilute aqueous solutions onto goethite and kaolinite was investigated at 25 degrees C, first in the absence and then in the presence of three benzene carboxylic acids: phthalic acid (benzene-1,2-dicarboxylic acid), trimesic acid (-1,3,5-), and mellitic acid (-1,2,3,4,5,6-). Carboxylic acid concentrations were 0.20, 0.10, and 0.05 mM. Anthracene (0.20 microM) did not adsorb strongly onto the pure mineral surfaces, but in the presence of phthalic acid a substantial increase in anthracene uptake was observed, particularly for the goethite systems. Trimesic and mellitic acids did not enhance anthracene uptake. Phthalate and proton adsorption data have been used to model phthalate adsorption onto the mineral surfaces using an extended constant capacitance surface complexation model. This model was then successfully adapted to account for the observed increase in anthracene uptake, where anthracene molecules were assumed to interact with adsorbed phthalate. We propose that the enhancement of anthracene adsorption in the presence of phthalic acid is due to an increase in the hydrophobicity of the mineral surface once phthalic acid molecules adsorb. The same effect was not observed for the other benzene carboxylates because of their greater polarity.  相似文献   

20.
The aim of this paper is to study the adsorption of the heavy metals (Cd(II), Cu(II), Mn(II), Pb(II), and Zn(II)) from aqueous solutions by a natural Moroccan stevensite called locally rhassoul. We carried out, first, a mineralogical and physicochemical characterization of stevensite. The surface area is 134 m2/g and the cation exchange capacity (CEC) is 76.5 meq/100 g. The chemical formula of stevensite is Si3.78Al0.22Mg2.92Fe0.09Na0.08K0.08O10(OH)2.4H2O. Adsorption tests of Cd(II), Cu(II), Mn(II), Pb(II), and Zn(II) in batch reactors were carried out at ambient temperature and at constant pH. Two simplified models including pseudo-first-order and pseudo-second- order were used to test the adsorption kinetics. The equilibrium time and adsorption rate of adsorption were determined. The increasing order of the adsorption rates follows the sequence Mn(II) > Pb(II) > Zn(II) > Cu(II) > Cd(II). The Dubinin-Radushkevich (D-R), Langmuir, and Redlich-Peterson (R-P) models were adopted to describe the adsorption isotherms. The maximal adsorption capacities at pH 4.0 determined from the D-R and Langmuir models vary in the following order: Cu(II) > Mn(II) > Cd(II) > Zn(II) > Pb(II). The equilibrium data fitted well with the three-parameter Redlich-Peterson model. The values of mean energy of adsorption show mainly an ion-exchange mechanism. Also, the influence of solution pH on the adsorption onto stevensite was studied in the pH range 1.5-7.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号