首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Inspection of austenitic stainless steel weldments by conventional ultrasonic means is fundamentally limited by the textured, columnar grain structure of the weld metal. It is shown that, for selected angles of incidence, shear waves normally polarized with respect to the columnar grains can pass through the weld metal-base metal interface without partial reflection. As a consequence, the inspectability of stainless steel weldments can be improved. The operation of a low frequency, ultrasonic system for stainless steel butt weldments is demonstrated.  相似文献   

2.
CO2 laser is employed to join a piece of powder metallurgical material (PMM) to a stainless steel in butt joint welding mode. The powder Ni35, as a filler powder, is used. The weld metal comes from three parts of stainless steel, powder Ni35, and Cu in W-Cu PMM. It is indicated that some parts of the W-Cu base metal are heated by laser and the metal Cu at the width of 0.06-0.12 mm from the edge is melted into the melting pool in the laser welding process. The formation of firm weld joint is just because that the melting liquid metal could fill the position occupied by metal Cu and surround the metal W granules fully. The analysis results indicate that the mechanism of the laser welding for stainless steel and W-Cu alloy is a special mode of fusion-brazing welding.  相似文献   

3.
The lap welding of JSC270CC steel and A6111-T4 aluminum alloys were carried out by a dual-beam YAG laser with the continuous wave (CW) and pulse wave (PW) modes. The microstructure of the welded joints were examined with SEM, EPMA while the properties were checked with microhardness tester and tensile testing machine. It was shown that the dual-beam laser welding can effectively reduce or avoid the formation of the blowholes in the welded joints. The PW laser beam penetrated the welding pool, leading to the root-shape structures with enhanced bonding strength at the weld interface. A 10 μm intermetallic compound (IMC) layer was generated at the interface. The shearing strength of lap joint was measured to be 128 MPa.  相似文献   

4.
The fiber laser welding of austenitic stainless steel and commercially pure copper in butt joint configuration without filler or intermediate material is presented. In order to melt stainless steel directly and melt copper via heat conduction a defocused laser beam was used with an offset to stainless steel. During mechanical tests the weld seam was more durable than heat affected zone of copper so samples without defects could be obtained. Three process variants of offset of the laser beam were applied. The following tests were conducted: tensile test of weldment, intermediate layer microhardness, optical metallography, study of the chemical composition of the intermediate layer, fractography. Measurements of electrical resistivity coefficients of stainless steel, copper and copper–stainless steel weldment were made, which can be interpreted or recalculated as the thermal conductivity coefficient. It shows that electrical resistivity coefficient of cooper–stainless steel weldment higher than that of stainless steel. The width of intermediate layer between stainless steel and commercially pure copper was 41–53 µm, microhardness was 128–170 HV0.01.  相似文献   

5.
Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.  相似文献   

6.
7.
5083铝合金光纤激光-TIG复合焊接工艺研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用IPG YLS-6000光纤激光器和Fronius MagicWave3000job数字化焊机,对4mm厚5083H116铝合金进行了复合焊接试验。研究了电源特性、电流大小和热源间距等工艺参数对光纤激光-钨极惰性气体保护焊(TIG)复合焊接焊缝成形的影响规律,并分析了焊接接头的缺陷、显微硬度及力学性能。结果表明,光纤激光-TIG复合焊接5083铝合金,能够明显改善焊缝成形,提高焊接过程稳定性,特别是与变极性TIG电弧复合效果更为显著;光纤激光与变极性TIG电弧复合焊接,采用激光在前的方式,电弧电流150A,且热源间距不大于4mm,可以得到具有明亮金属光泽和均匀鱼鳞纹的焊缝,焊缝无气孔和裂纹缺陷,其表面有少量的下凹;复合焊接接头抗拉强度为318MPa,达到母材强度的93%,延伸率为7.6%,高于单光纤激光焊接,断口分析为韧性断裂。  相似文献   

8.
采用IPG YLS-6000光纤激光器和Fronius MagicWave3000job数字化焊机,对4 mm厚5083 H116铝合金进行了复合焊接试验。研究了电源特性、电流大小和热源间距等工艺参数对光纤激光-钨极惰性气体保护焊(TIG)复合焊接焊缝成形的影响规律,并分析了焊接接头的缺陷、显微硬度及力学性能。结果表明,光纤激光-TIG复合焊接5083铝合金,能够明显改善焊缝成形,提高焊接过程稳定性,特别是与变极性TIG电弧复合效果更为显著;光纤激光与变极性TIG电弧复合焊接,采用激光在前的方式,电弧电流150 A,且热源间距不大于4 mm,可以得到具有明亮金属光泽和均匀鱼鳞纹的焊缝,焊缝无气孔和裂纹缺陷,其表面有少量的下凹;复合焊接接头抗拉强度为318 MPa,达到母材强度的93%,延伸率为7.6%,高于单光纤激光焊接,断口分析为韧性断裂。  相似文献   

9.
Laser cladding of stainless steel substrate was carried out using Ni-32Mo-15Cr-3Si (wt%) alloy powder. Laser cladding parameters were optimized to obtain defectfree and metallurgically bonded clad. Variation in solidification rate, cooling rate and compositional variation resulted in heterogeneous microstructure. Microstructure was found to be distinctly different in regions of clad cross-section. Majority of the region was found to consist of eutectic of Mo-rich hcp intermetallic Laves phase and NiFe fcc gamma solid solution phases. Extensive microstructural examinations of different clad regions have been carried out using microscopy and microanalysis techniques.  相似文献   

10.
In this study, certain technological variants of the laser welding of alloy 1424 of the Al–Mg–Li–Zr system are considered with the purpose of obtaining the durability level of the welded joint, which is close to that of the basic metal. It is shown that, in the case of using various types of plastic deformation of the welded joint, its durability can be increased considerably to 0.85–0.95 from that of the basic metal.  相似文献   

11.
在150kV/39mA的焊接参数下进行了316L/RAFM钢电子束焊工艺实验,对接头微观组织与力学性能进行了测试分析。在存在磁偏转的情况下,有效焊接深度达到了18mm,且焊接接头性能良好。  相似文献   

12.
In laser-arc double-sided welding, the spectral characteristics of the arc plasma are calculated and analyzed by spectroscopic diagnosis. The results show that, compared with conventional tungsten inert gas(TIG) welding,the introduction of a laser changes the physical characteristics of the arc plasma regardless of whether laser plasma penetration takes place, and that the influence of the laser mainly affects the near-anode region of the arc. When the laser power is relatively low, the arc column tends to compress, and the arc spectral characteristics show no significant difference. When the arc root constricts, compared with pure TIG arc, the electron density increases by ~2.7 times and the electron temperature decreases by ~3000 K. When the arc column expands, the intensities of spectral lines of both the metal and Ar atoms are the strongest. But it is also observed that the electron density reduces, whereas there is no obvious decrease of electron temperature.  相似文献   

13.
The effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal, on wear resistance is studied, A 5-kW transverse flowing CO2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the spoiled rate of products with laser clad layers was lower and the rate of finished products was higher. Their microstructure is extremely fine. They have close texture and small size grain. Their dilution resulting from the compositions of the base metal and thermal effect on base metal are less. The hardness, toughness,and strength of the laser cladding layers are higher. Wear tests show that the laser layers have higher properties of anti-friction, anti-scour and high-temperature sliding strike. The wear resistance of laser clad layers are about one time higher than that of plasma spray welding layer.  相似文献   

14.
汽车剪裁板的激光高速拼焊试验研究   总被引:4,自引:0,他引:4  
对不同形状、不同厚度及不同表面覆层的剪裁钢板进行激光高速拼焊试验 ,研究了激光拼焊工艺参数 (包括激光模式、激光功率、拼焊速度、离焦量和辅助吹气等 )对激光拼焊质量的影响。并对激光拼焊的 0 8Al剪裁钢板进行拉伸 ,胀形 (杯突 )试验和汽车钢板结构模拟试件的冲压性能试验。试验结果表明 ,激光拼焊的剪裁板能满足汽 (轿 )车钢板结构件的冲压性能要求。对激光拼焊焊缝终端关光处缺陷进行了研究  相似文献   

15.
The existence of thermoelectric currents (TECs) in workpieces during the laser welding of metals has been common knowledge for more than 15 years. However, the time-dependent evolutions of TECs in laser welding remain unclear. The present study developed a novel three-dimensional theoretical model of thermoelectric phenomena in the fiber laser welding of austenite stainless steel and used it to observe the time-dependent evolutions of TECs for the first time. Our model includes the complex physical effects of thermal, electromagnetic, fluid and phase transformation dynamics occurring at the millimeter laser ablated zone, which allowed us to simulate the TEC, self-induced magnetic field, Lorentz force, keyhole and weld pool behaviors varying with the welding time for different parameters. We found that TECs are truly three-dimensional, time-dependent, and uneven with a maximum current density of around 107 A/m2 located at the liquid-solid (L/S) interface near the front or bottom part of the keyhole at a laser power of 1.5 kW and a welding speed of 3 m/min. The TEC formed three-dimensional circulations moving from the melting front to solidification front in the solid part of workpiece, after which the contrary direction was followed in the liquid part. High frequency oscillation characteristics (2.2–8.5 kHz) were demonstrated in the TEC, which coincides with that of the keyhole instability (2.0–5.0 kHz). The magnitude of the self-induced magnetic field and Lorentz force can reach 0.1 mT and 1 kN/m3, respectively, which are both consistent with literature data. The predicted results of the weld dimensions by the proposed model agree well with the experimental results. Our findings could enhance the fundamental understanding of thermoelectric phenomena in laser welding.  相似文献   

16.
The surface micro- and nano-scale features produced by femtosecond laser irradiation on titanium, stainless steel, aluminum and copper are reported in this work. Each observed surface microstructure, which was fabricated from a particular combination of four adjustable parameters, can be characterized by the fluence and pulses-per-spot (F-PPS) and accumulated fluence profile (AFP) models. By performing a wide screening of the experimental space, we have successfully mapped the evolution of microstructures as a function of two variables per model. We have also shown that these two models, in conjunction with one another and the data that we have presented, can be used as an optimization tool for scientists and engineers to quickly fine-tune the laser processing settings necessary for a desired surface topography. In addition, the electron–phonon coupling strength and thermal conductivity have been identified as the material properties that have the largest influence over the achievable surface patterns on metallic substrates.  相似文献   

17.
A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.  相似文献   

18.
This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.  相似文献   

19.
A cusp in the magnetic susceptibility temperature dependence of a commercial manganese austenitic stainless steel alloy, attributable to spin-glass condensation, is accompanied by anomalies in the temperature dependences of both longitudinal and transverse ultrasonic wave velocities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号