首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduction of nitrobenzene derivatives in the presence of arylureas in aprotic solvents results in large positive shifts in potential of the nitrobenzene(0/)(-) cyclic voltammetry wave with little change in wave shape. This behavior is indicative of reversible hydrogen bonding between nitrobenzene radical anions and arylureas. Computer fitting of the cyclic voltammetry of 4-nitroaniline, NA, plus 1,3-diphenylurea in DMF shows essentially no binding between urea and NA in the oxidized state (K(ox) < 1 M(-)(1)), but very strong binding in the reduced state (K(red) = 8 x 10(4) M(-)(1)), along with very rapid rates of hydrogen bond formation (k(f)'s approximately 10(8)-10(10) M(-)(1) s(-)(1)), making this system a fast on/off redox switch.  相似文献   

2.
3.
Oxidation of a dimethylaminophenyl-substituted urea leads to a > 2000-fold increase in binding strength between the urea and a diamide guest in 0.1 M NBu4B(C6F5)4/CH2Cl2. The strength of this interaction is obscured when NBu4ClO4 or NBu4PF6 is used as the electrolyte due to competition between the neutral guest and the electrolyte anion for H-bonding to the urea cation.  相似文献   

4.
[reaction: see text] The electrochemistry of 1,2-dinitrobenzene (1,2-DNB), 1,3-dinitrobenzene (1,3-DNB), and 1,4-dinitrobenzene (1,4-DNB) is strongly affected by the presence of 1,3-diphenylurea. In DMF, the second reduction potential of all three DNBs shifts substantially positive in the presence of the urea, indicating very strong hydrogen bonding to the dianions. With 1,2- and 1,3-DNB, the hydrogen bonding leads to irreversible chemistry, likely due to proton transfer from the urea to the dianions. No such irreversible behavior is observed with 1,4-DNB. Instead, the second reduction shifts into the first reduction, producing a single, reversible, two-electron cyclic voltammetric wave at high urea concentrations. Computer simulations show that the changes in wave shape accompanying this process are well accounted for by the stepwise formation of a 1:1 and 2:1 1,3-diphenylurea/DNB2- complex, with sequential binding constants of approximately 5.5 x 10(4) M(-1) and approximately 4.0 x 10(3) M(-1) in DMF.  相似文献   

5.
Electrochemically controlled formation and growth of hydrogen nanobubbles   总被引:2,自引:0,他引:2  
Electrogenerated microscale bubbles that are confined at the electrode surface have already been extensively studied because of their significant influence on electrochemistry. In contrast, as far as we know, whether nanoscale bubbles exist on the electrode surface has not been experimentally confirmed yet. Here, we report the observation of electrochemically controlled formation and growth of hydrogen nanobubbles on bare highly oriented pyrolytic graphite (HOPG) surface via in-situ tapping mode atomic force microscopy (TMAFM). By using TMAFM imaging, we observed that electrochemically generated hydrogen gas led to the formation of nanobubbles at the HOPG surface. We then employed a combination of techniques, including phase imaging, ex-situ degassing, and tip perturbation, to confirm the gas origin of such observed nanobubbles. We further demonstrated that the formation and growth of nanobubbles could be well controlled by tuning either the applied voltage or the reaction time. Remarkably, we could also monitor the evolution process of nanobubbles, that is, formation, growth, coalescence, as well as the eventual release of merged microbubbles from the HOPG surface.  相似文献   

6.
Electrochemically tuneable hydrogen bonding interactions are described between a phenyl-urea terminated dendrimer and phenanthrenequinone.  相似文献   

7.
Adamantane-dipyrromethane (AdD) receptors [di(pyrrole-2-yl)methyladamantane (1), 2,2-di(pyrrole-2-yl)adamantane (2), 1,3-bis[di(pyrrole-2-yl)methyl]adamantane (3), 2,2,6,6-tetra(pyrrole-2-yl)adamantane (4)] form complexes with F, Cl, Br, AcO, NO3, HSO4, and H2PO4. The association constants of the complexes were determined by 1H NMR titrations, whereas the geometries of complexes 1·F (2:1), 2·F (2:1), 2·Cl (2:1), 2·AcO (2:1), and 4·F (1:1) were determined by X-ray structural analysis. The most stable complexes are of 2:1 stoichiometry with F and AcO. The stability constants are in accordance with the anion basicity and the ability of AdD receptors to place the hydrogen bonding donor groups in a tetrahedral fashion around anions. The binding energies of the complexes between receptors 1-4 and F anion are calculated using quantum chemical methods. The calculated results show that the solvent polarity is important for the complexation of fluoride ion with AdD receptors 1-4.  相似文献   

8.
The carbohydrate recognition properties of synthetic tripodal receptors relying on H-bonding interactions have highlighted the crucial role played by the functional groups matching saccharidic hydroxyls. Herein, pyrrole and pyridine, which emerged as two of the most effective H-bonding groups, were quantitatively compared through their isostructural substitution within the architecture of a shape-persistent bicyclic cage receptor. NMR and ITC binding studies gave for the pyrrolic receptor a 20-fold larger affinity toward octyl-β-d-glucopyranoside in CDCl(3), demonstrating the superior recognition properties of pyrrole under conditions in which differences would depend on the intrinsic binding ability of the two groups. The three-dimensional structures of the two glucoside complexes in solution were elucidated by combined NMR and molecular mechanics computational techniques, showing that the origin of the stability difference between the two closely similar complex structures resides in the ability of pyrrole to establish shorter/stronger H-bonds with the glucosidic ligand compared to pyridine.  相似文献   

9.
Twenty two hydrogen-bonded and improper blue-shifting hydrogen-bonded complexes were studied by means of the HF, MP2 and B3LYP methods using the 6-31G(d,p) and 6--311 ++G(d,p) basis sets. In contrast to the standard H bonding, the origin of the improper blue-shifting H bonding is still not fully understood. Contrary to a frequently presented idea, the electric field of the proton acceptor cannot solely explain the different behavior of the H-bonded and improper blue-shifting H-bonded complexes. Compression of the hydrogen bond due to different attractive forces-dispersion or electrostatics--makes an important contribution as well. The symmetry-adapted perturbation theory (SAPT) has been utilized to decompose the total interaction energy into physically meaningful contributions. In the red-shifting complexes, the induction energy is mostly larger than the dispersion energy while, in the case of blue-shifting complexes, the situation is opposite. Dispersion as an attractive force increases the blue shift in the blue-shifting complexes as it compresses the H bond and, therefore, it increases the Pauli repulsion. On the other hand, dispersion in the red-shifting complexes increases their red shift.  相似文献   

10.
Natural anion receptors use charge-neutral dipoles to bind small anions with high affinities and selectivities. A convergent and rigid display of hydrogen bond donors such as amide, thiourea and urea functional groups in macrocyclic scaffolds would be one of the most efficient ways to create synthetic anion receptors that mimic natural ones. In this article, we present examples of natural anion receptors and discuss the synthesis of neutral macrocyclic receptors and their anion binding properties.  相似文献   

11.
Sun SS  Lees AJ  Zavalij PY 《Inorganic chemistry》2003,42(11):3445-3453
Two structurally simple and easily synthesized luminescent anion receptors featured with an amide-type anion binding site and rhenium(I) tricarbonyl pyridine signaling units have been developed, and they display outstanding sensitivity and selectivity toward a variety of anionic species. These complexes are highly emissive in solution. Upon anion binding, the emission intensity was significantly quenched. The sensitivities of these complexes are so high that the emission intensity can be effectively quenched by as much as 10% even in the presence of only 10(-8) M cyanide or fluoride anions. The ability of formation of intramolecular hydrogen bonding between the amide protons and central pyridine is believed to be responsible for the observed high selectivity.  相似文献   

12.
Urea-functionalized porphyrins with amino acid substituents bind sugar derivatives strongly in non-polar solution.  相似文献   

13.
We report on the use of the hydrogen bond acceptor properties of some phosphorus-containing functional groups for the assembly of a series of [2]rotaxanes. Phosphinamides, and the homologous thio- and selenophosphinamides, act as hydrogen bond acceptors that, in conjunction with an appropriately positioned amide group on the thread, direct the assembly of amide-based macrocycles around the axle to form rotaxanes in up to 60% yields. Employing solely phosphorus-based functional groups as the hydrogen bond accepting groups on the thread, a bis(phosphinamide) template and a phosphine oxide-phosphinamide template afforded the corresponding rotaxanes in 18 and 15% yields, respectively. X-ray crystallography of the rotaxanes shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and various hydrogen bond accepting groups on the thread, including rare examples of amide-to-phosphinamide, -thiophosphinamide, and -selenophosphinamide groups. With a phosphine oxide-phosphinamide thread, the solid-state structure of the rotaxane is remarkable, featuring no direct intercomponent hydrogen bonds but rather a hydrogen bond network involving water molecules that bridge the H-bonding groups of the macrocycle and thread through bifurcated hydrogen bonds. The incorporation of phosphorus-based functional groups into rotaxanes may prove useful for the development of molecular shuttles in which the macrocycle can be used to hinder or expose binding ligating sites for metal-based catalysts.  相似文献   

14.
15.
We describe the electrochemically controlled hydrogen bonding interactions between the isobutyl flavin/2,6-diferrocenylamidopyridine (2·5) and 9,10-phenanthrenequinone/1-ferrocenyl-3-hexylurea (4·6) dyads. Cyclic and square wave voltammetry studies have shown that the binding efficiencies between these moieties can be electrochemically actuated in non-polar (CH2Cl2 for 2·5) or polar (DMF for 4·6) organic solvents between three distinct states.  相似文献   

16.
In this article we present an extension of our modified MM2(80) force field MM2MOD in which a potential function for hydrogen bonding in alcohols and ethers is included. The results of applying MM2(85), MM2(87), and MM2MOD on ethylene glycol, 2-methoxyethanol and 1,3-propanediol are reported and compared with available experimental data and ab initio results. It is concluded that hydrogen bonding plays an important role in determining the molecular conformations of these systems. © 1992 by John Wiley & Sons, Inc.  相似文献   

17.
18.
19.
20.
The rate constants for H-atom abstraction (k(H)) from 1,4-cyclohexadiene (CHD), triethylamine (TEA), triisobutylamine (TIBA), and DABCO by the cumyloxyl (CumO(?)) and benzyloxyl (BnO(?)) radicals were measured. Comparable k(H) values for the two radicals were obtained in their reactions with CHD and TIBA whereas large increases in k(H) for TEA and DABCO were found on going from CumO(?) to BnO(?). These differences are attributed to the rate-determining formation of BnO(?) C-H/amine N lone-pair H-bonded complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号