首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用修正的简单方程法对变系数李方程组进行求解,给出了变系数李方程组的双曲函数形式的行波解,当参数取特殊值时,便可以得到该方程组的精确孤波解.  相似文献   

2.
卢殿臣  杨广娟 《应用数学》2007,20(4):777-782
本文通过构造两个新的Riccati方程组,应用齐次平衡原则和分离变量法的思想,借助Matlnematica软件,得到了变系数(2+1)维非线性色散长波方程的一系列新的精确解.包括各种类孤立波解、类周期解等,并构造了该方程的几种不同形式的局域相干结构.  相似文献   

3.
本文讨论了一类变系数的竞争扩散方程组,其中系数关于空间和时间变元连续,而关于时间变元是周期的.通过构造上下解,运用单调迭代方法证明了带Neumann边界条件的竞争扩散方程组正周期解的存在性和唯一性.  相似文献   

4.
提出了一种寻找变系数非线性方程精确解的新方法—相容方程法,利用该方法求出了变系数非线性KP方程的精确解,从而证明了这种方法是十分有效的.  相似文献   

5.
一类变系数KdV方程的Painlevé分析和自B(a)cklund变换   总被引:1,自引:0,他引:1  
利用符号计算对一类系数函数是x和t的函数的变系数KdV方程进行了Painlevé分析,得到了该方程具有Painlevé性质时系数函数必须满足的约束条件.利用Backlund截断法给出了该方程的一个自Backlund变换,作为例子根据得到的自Backlund变换给出了两组精确解.  相似文献   

6.
利用符号计算对一类系数函数是x和t的函数的变系数KdV方程进行了Painlevé分析,得到了该方程具有Painlevé性质时系数函数必须满足的约束条件.利用Backlund截断法给出了该方程的一个自Backlund变换,作为例子根据得到的自Backlund变换给出了两组精确解.  相似文献   

7.
本文利用同伦摄动法求关于时间Burgers方程组的二阶近似解,为了说明此方法的有效性我们利用Maple 14软件作出了整数阶耦合Burgers方程组的近似解和精确解的图像.结果表明此方法计算量小,避免了对系数的复杂讨论过程并且得出的近似解精确度较高.  相似文献   

8.
利用推广后的反演散射法获得变系数Sine-Gordon方程新的B(a|¨)cklund变换.同时,结合齐次平衡法原理并利用G'/G方法,讨论了变系数Sine-Gordon方程的精确解,从而得到了变系数Sine-Gordon方程的用双曲函数和三角函数表示的精确解.  相似文献   

9.
本文在文[1]的基础上提出了一个新的方法可用于求解任意变系数非线性常微分方程组.文中导出了任意轴对称载荷和不同边界条件下的非均匀弹性地基圆薄板大变形的一般解,并给出了收敛于精确解的证明.问题最后可归结为求解一个仅含有三个未知量的非线性代数方程组.该方法和其它方法比较,具有收敛范围大,计算简便迅速等特点.文末给出算例表明内力和位移均可得到满意的结果,验证了本文理论的正确性.  相似文献   

10.
套格图桑 《应用数学》2018,31(4):958-966
通过函数变换与第二种椭圆方程相结合的方法,构造变系数耦合KdV方程组的复合型新解.步骤一、给出第二种椭圆方程的几种新解.步骤二、利用函数变换与第二种椭圆方程相结合的方法,在符号计算系统Mathematica的帮助下,构造变系数耦合KdV方程组的由Riemannθ函数、Jacobi椭圆函数、双曲函数、三角函数和有理函数组合的复合型新解,这里包括了孤子解与周期解复合的解、双孤子解和双周期解.  相似文献   

11.
By using solutions of an ordinary differential equation, an auxiliary equation method is described to seek exact solutions of nonlinear evolution equations with variable coefficients. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients. As a result, new explicit solutions including solitary wave solutions and trigonometric function solutions are obtained with the aid of symbolic computation.  相似文献   

12.
According to Ma-Fuchsseiter’s idea, a trial equation method was proposed to find the exact envelop traveling wave solutions to some nonlinear differential equations with variable coefficients. As an application, combining with the complete discrimination system for polynomial, some exact envelop traveling wave solutions to Schrödinger equation with variable coefficients were obtained. At the same time, the physical meanings of the obtained solutions are discussed, and the problem needed to further study is pointed out.  相似文献   

13.
Two nonlinear Schrödinger equations with variable coefficients are researched, and the various exact solutions (including the bright and dark solitary waves) of the nonlinear Schrödinger equations are obtained with the aid of a subsidiary elliptic-like equation (sub-ODEs for short), at the same time, the constraint conditions which the coefficients of the nonlinear Schrödinger equations with variable coefficients satisfy are presented. The exact solutions and the constraint conditions are helpful in the application of the nonlinear Schrödinger equations with variable coefficients studied in this paper.  相似文献   

14.
IntroductionDuring the study of water wave, many completely iategrable models were derived, such as(1+1)-dimensional KdV equation, MKdV equation, (2+1)-dimensional KdV equation, Boussinesq equation and WBK equations etc. Many properties of these models had been researched,such as BAcklund transformation (BT), converse rules, N-soliton solutions and Painleve property etc.II--8]. In this paper, we would like to consider (2+1)-dimensional variable coefficientgeneralized KP equation which …  相似文献   

15.
In this short letter, with the aid of symbolic computational system Mathematic, new exact solutions including kink solutions, soliton-like solutions and periodic form solutions for a generalized Zakharov–Kuznetsov equation with variable coefficients are obtained using the generalized Riccati equation mapping method.  相似文献   

16.
蒋志萍 《数学季刊》2012,(2):224-231
With the help of the variable-coefficient generalized projected Ricatti equation expansion method,we present exact solutions for the generalized(2+1)-dimensional nonlinear Schrdinger equation with variable coefficients.These solutions include solitary wave solutions,soliton-like solutions and trigonometric function solutions.Among these solutions,some are found for the first time.  相似文献   

17.
In this article we find the exact traveling wave solutions of the generalized nonlinear Schrödinger (GNLS) equation with variable coefficients using three methods via the generalized extended tanh-function method, the sine-cosine method and the exp-function method. The main objective of this article is to compare the efficiency of these methods by delivering the exact traveling wave solutions of the proposed nonlinear equation.  相似文献   

18.
In this paper, variable coefficients Kawahara equation (VCKE) and variable coefficients modified Kawahara equation (VCMKE), which arise in modeling of various physical phenomena, are studied by Lie group analysis. The similarity reductions and exact solutions are derived by determining the complete sets of point symmetries of these equations. Moreover, some exact analytic solutions are considered by the power series method. Further, a generalized ‐expansion method is applied to VCKE and VCMKE for constructing some new exact solutions. As a result, hyperbolic function solutions, trigonometric function solutions and some rational function solutions with parameters are furnished. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
利用白噪声分析、Hermite变换和双曲正切法来研究随机偏微分KleinGordon方程,并在Kondratiev分布空间(S)-1-上分别获得了变系数Klein-Gordon方程和Wick型随机Klein-Gordon方程的精确解和白噪声泛函解.  相似文献   

20.
In this paper,we consider the wick-type Kd V-Burgers equation with variable coefficients. By using Tanh method with the aid of Hermite transformation, we deduce the exact solutions which include hyperbolic-exponential, trigonometric-exponential and exponential function solutions for the considered equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号