首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
In [A. Jüngel, Global weak solutions to compressible Navier–Stokes equations for quantum fluids, SIAM J. Math. Anal. 42 (2010) 1025–1045], Jüngel proved the global existence of the barotropic compressible quantum Navier–Stokes equations for when the viscosity constant is bigger than the scaled Planck constant. Recently, Dong [J. Dong, A note on barotropic compressible quantum Navier–Stokes equations, Nonlinear Anal. TMA 73 (2010) 854–856] extended Jüngel’s result to the case where the viscosity constant is equal to the scaled Planck constant by using a new estimate of the square root of the solutions. In this paper we show that Jüngel’s existence result still holds when the viscosity constant is bigger than the scaled Planck constant. Consequently, with our result, the existence for all physically interesting cases of the scaled Planck and viscosity constants is obtained.  相似文献   

2.
The global-in-time existence of weak solutions to the barotropic compressible quantum Navier-Stokes equations has been proved very recently, by Jüngel (2009) [1], if the viscosity constant is smaller than the scaled Plank constant. This paper extends the results to the case that the viscosity constant equals the scaled Plank constant. By using a new estimate on the square root of the solution, apparently not available in [1], the semiclassical limit for the viscous quantum Euler equations (which are equivalent to the barotropic compressible quantum Navier-Stokes equations) can be performed; then the results of this paper are obtained easily.  相似文献   

3.
An approximation of the Hamilton-Jacobi-Bellman equation connected with the infinite horizon optimal control problem with discount is proposed. The approximate solutions are shown to converge uniformly to the viscosity solution, in the sense of Crandall-Lions, of the original problem. Moreover, the approximate solutions are interpreted as value functions of some discrete time control problem. This allows to construct by dynamic programming a minimizing sequence of piecewise constant controls.  相似文献   

4.
For quantum fluids governed by the compressible quantum Navier-Stokes equations in $\Bbb R^3$ with viscosity and heat conduction, we prove the optimal $L^p-L^q$ decay rates for the classical solutions near constant states. The proof is based on the detailed linearized decay estimates by Fourier analysis of the operators, which is drastically different from the case when quantum effects are absent.  相似文献   

5.
We consider the dissipative surface quasigeostrophic equation with a dispersive forcing term and study the relation of solutions with vanishing viscosity to solutions of the inviscid equation with strong, constant or no dispersion. We show convergence by developing estimates based on the relative energy inequality.  相似文献   

6.
We present a semigroup analysis of the quantum Liouville equation, which models the temporal evolution of the (quasi) distribution of an electron ensemble under the action of a scalar potential. By employing the density matrix formulation of quantum physics we prove that the quantum Liouville operator generates a unitary group on L2 if the corresponding Hamiltonian is essentially self-adjoint. Also, we analyse the existence and non-negativity of the particale density and prove that the solutions of the quantum Liouville equation converge to weak solutions of the classical Liouville equation as the Planck constant tends to zero (assuming that the potential is sufficiently smooth).  相似文献   

7.
This paper concerns the threshold of global existence and finite time blow up of solutions to the time-dependent focusing Gross-Pitaevskii equation describing the Bose-Einstein condensation of trapped dipolar quantum gases. Via a construction of new cross-constrained invariant sets, it is shown that either the corresponding solution globally exists or blows up in finite time according to some appropriate assumptions about the initial datum.  相似文献   

8.
The blow-up in finite time for the solutions to the initial-boundary value problem associated to the multi-dimensional quantum hydrodynamic model in a bounded domain is proved. The model consists on conservation of mass equation and a momentum balance equation equivalent to a compressible Euler equations corrected by a dispersion term of the third order in the momentum balance. The proof is based on a priori estimates for the energy functional for a new observable constructed with an auxiliary function, and it is shown that, under suitable boundary conditions and assumptions on the initial data, the solution blows up after a finite time.  相似文献   

9.
We consider the blow‐up of solutions for a semilinear reaction‐diffusion equation with exponential reaction term. It is known that certain solutions that can be continued beyond the blow‐up time possess a non‐constant self‐similar blow‐up profile. Our aim is to find the final time blow‐up profile for such solutions. The proof is based on general ideas using semigroup estimates. The same approach works also for the power nonlinearity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We show that weak solutions of the Derrida–Lebowitz–Speer–Spohn (DLSS) equation display infinite speed of support propagation. We apply our method to the case of the quantum drift–diffusion equation which augments the DLSS equation with a drift term and possibly a second-order diffusion term. The proof is accomplished using weighted entropy estimates, Hardy’s inequality and a family of singular weight functions to derive a differential inequality; the differential inequality shows exponential growth of the weighted entropy, with the growth constant blowing up very fast as the singularity of the weight becomes sharper. To the best of our knowledge, this is the first example of a nonnegativity-preserving higher-order parabolic equation displaying infinite speed of support propagation.  相似文献   

11.
The long-time behavior of the particle density of the compressible quantum Navier-Stokes equations in one space dimension is studied. It is shown that the particle density converges exponentially fast to the constant thermal equilibrium state as the time tends to infinity, the decay rate is also obtained. The results hold regardless of either the bigger of the scaled Planck constant or the viscosity constant. This improves the decay results of [5] by removing the crucial assumption that the scaled Planck constant is bigger than the viscosity constant. The proof is based on the entropy dissipation method and the Bresch-Desjardins type of entropy.  相似文献   

12.
In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear equation describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli and Rumschitzki, Phys. Fluids A2(3), 340–352 (1990), to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.Research supported by NATO grant CRG 920097.Research was supported by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-19480 and NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681; also by grants NATO CRG 920097, and SBR NJIT-93.  相似文献   

13.
This paper is concerned with some dynamical property of a reaction-diffusion equation with nonlocal boundary condition. Under some conditions on the kernel in the boundary condition and suitable conditions on the reaction function, the asymptotic behavior of the time-dependent solution is characterized in relation to a finite or an infinite set of constant steady-state solutions. This characterization is determined solely by the initial function and it leads to the stability and instability of the various steady-state solutions. In the case of finite constant steady-state solutions, the time-dependent solution blows up in finite time when the initial function in greater than the largest constant solution. Also discussed is the decay property of the solution when the kernel function in the boundary condition prossesses alternating sign in its domain.  相似文献   

14.
We are concerned with the Cauchy problem of the quantum Landau equation in the whole space. The existence of local in time nearby quantum Maxwellian solutions is proved by the iteration method and generalized maximum principle. Based on Kawashima?s compensating function and nonlinear energy estimates, the global existence and the optimal time decay rate of those solutions are obtained under some conditions on initial data.  相似文献   

15.
16.
This article considers the problem of building absolutely minimizing Lipschitz extensions to a given function. These extensions can be characterized as being the solution of a degenerate elliptic partial differential equation, the ``infinity Laplacian', for which there exist unique viscosity solutions.

A convergent difference scheme for the infinity Laplacian equation is introduced, which arises by minimizing the discrete Lipschitz constant of the solution at every grid point. Existence and uniqueness of solutions to the scheme is shown directly. Solutions are also shown to satisfy a discrete comparison principle.

Solutions are computed using an explicit iterative scheme which is equivalent to solving the parabolic version of the equation.

  相似文献   


17.
Convergence of Rothe's method for the fully nonlinear parabolic equation ut+F(D2u, Du, u, x, t)=0 is considered under some continuity assumptions on F. We show that the Rothe solutions are Lipschitz in time, Hölder in space, and they solve the equation in the viscosity sense. As an immediate corollary we get Lipschitz behavior in time of the viscosity solutions of our equation.  相似文献   

18.
In this article, we study the dynamics of large-scale motion in atmosphere and ocean governed by the 3D quasi-geostrophic potential vorticity (QGPV) equation with a constant stratification. It is shown that for a Kolmogorov forcing on the first energy shell, there exist a family of exact solutions that are dissipative Rossby waves. The nonlinear stability of these exact solutions are analyzed based on the assumptions on the growth rate of the forcing. In the absence of forcing, we show the existence of selective decay states for the 3D QGPV equation. The selective decay states are the 3D Rossby waves traveling horizontally at a constant speed. All these results can be regarded as the expansion of that of the 2D QGPV system and in the case of 3D QGPV system with isotropic viscosity. Finally, we present a geometric foundation for the model as a general equation for nonequilibrium reversible-irreversible coupling.  相似文献   

19.
We consider perturbations of the semiclassical Schrödinger equation on a compact Riemannian surface with constant negative curvature and without boundary. We show that, for scales of times which are logarithmic in the size of the perturbation, the solutions associated to initial data in a small spectral window become equidistributed in the semiclassical limit. As an application of our method, we also derive some properties of the quantum Loschmidt echo below and beyond the Ehrenfest time for initial data in a small spectral window.  相似文献   

20.
Three types of dispersion equations are analyzed that describe the eigenvalues of the effective refractive index of a multilayer plane optical waveguide and the energy eigenvalues of a quantum particle placed in a piecewise constant potential field. The first equation (D1) is derived by setting to zero the determinant of the system of linear equations produced by matching the solutions in the layers. The second equation (D2) is obtained using the well-known method of characteristic matrices. The third equation has been obtained in the general case by the author and is known as a multilayer equation. Simple relations between the three equations are established. It is shown that the set of roots of D2 exactly coincides with the set of eigenvalues of the multilayer problem, while the roots of D1 and the multilayer equation contain those equal to the refractive index in the optical case (or to the potential in the quantum case) in internal layers of the system, which may be superfluous. Examples are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号